# MSKSEMI 美森科













ESD

TVS

TSS

MOV

GDT

PIFD

## MSN74AHC1G32DxxR

Product specification





### **General Description**

This single 2-input positive- OR gate is designed for 1.65-V to 5.5-V Vcc operation.

The MSN74AHC1G32DxxR performs the Boolean function. Y=A+B or Y= $\overline{A}$ .  $\overline{B}$  in positive logic. The CMOS device has high output drive while maintaining low static power dissipation over a broad Vcc operating range.

The MSN74AHC1G32DxxR device is available in a variety of packages.

### **Features**

- Operatefrom1.65Vto5.5V
- Supports5-VVCCoperation
- Specifiedfrom-20°Cto85°C
- ProvidesdowntranslationtoV<sub>CC</sub>
- Maxtpdof3.8nsat3.3V
- ±24-mAoutputdriveat3.3V

### **Applications**

- Personalnavigationdevice(GPS)
- AVreceiver
- High-speeddataacquisitionandgeneration
- SSD:internalandexternal
- Digitalpictureframe(DPF)
- TV:LCD/digitalandhigh-definition(HDTV)

### **Reference News**

| SOT-23-5 | Pinning and<br>Package      | Marking               |
|----------|-----------------------------|-----------------------|
|          | VCC Y  5  4  1 2 3  A B GND | A <u>3</u> 2 <u>3</u> |

| SC70-5 | Pinning and Package | Marking             |
|--------|---------------------|---------------------|
|        | VCC Y  S  A  B  GND | <u>A</u> G <u>L</u> |

### **Pin Functions**

| Pi   | Pin            |      | Decemention    |  |
|------|----------------|------|----------------|--|
| Name | SOT23-5/SC70-5 | Туре | Description    |  |
| А    | 1              | I    | Data Input     |  |
| В    | 2              | I    | Data Input     |  |
| GND  | 3              | -    | Ground         |  |
| Υ    | 4              | 0    | Data Output    |  |
| Vcc  | 5              | -    | Supply Voltage |  |

### Order information

| Orderable Device | Package | Packing Option |
|------------------|---------|----------------|
| MSN74AHC1G32DBVR | SOT23-5 | 3000PCS        |
| MSN74AHC1G32DCKR | SC70-5  | 3000PCS        |



### **Absolute Maximum Ratings**

|                  | Parameters                                    | Min                             | Max. | Unit    |            |
|------------------|-----------------------------------------------|---------------------------------|------|---------|------------|
| Vcc              | Supply voltage r                              | ange                            | -0.5 | 6.5     | ٧          |
| Vı               | Input voltage ra                              | ange                            | -0.5 | 6.5     | ٧          |
| Vo               | Voltage range applied to any output in the hi | gh-impedance or power-off state | -0.5 | 6.5     | V          |
| Vo               | Voltage range applied to any outpu            | ut in the high or low state     | -0.5 | Vcc+0.5 | V          |
| lıĸ              | Input clamp current                           | Vi<0                            |      | -50     | mA         |
| <b>І</b> ок      | Output clamp current                          | Vo<0                            |      | -50     | mA         |
| lo               | Continuous output                             | current                         |      | ±50     | mA         |
|                  | Continuous current through Vo                 |                                 | ±100 | mA      |            |
| TJ               | Junction temperature under bias               |                                 |      | 85      | $^{\circ}$ |
| T <sub>stg</sub> | Storage temperature range                     |                                 |      | 150     | $^{\circ}$ |

<sup>(1)</sup> Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

### **Functional Block Diagram**



### **ESD Ratings**

| ESD                            |  |                                           | Value | Unit |
|--------------------------------|--|-------------------------------------------|-------|------|
| V(ESD) Electrostatic Discharge |  | Human-Body Model (HBM) <sup>(1)</sup>     | 8 K   | ٧    |
|                                |  | Charged-Device Model (CDM) <sup>(2)</sup> | 1.5K  | V    |

<sup>(1)</sup> JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

### **Thermal Information**

| Package Type | <b>Ө</b> ЈА | <b>Ө</b> лс | Unit |
|--------------|-------------|-------------|------|
| SOT23-5      | 250         | 81          | °CM  |
| SC70-5       | 400         | 150         | °CW  |

<sup>(2)</sup> The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

<sup>(2)</sup> JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.



### **Recommended Operating Conditions**

Over operating free-air temperature range (unless otherwise noted)

| Symbol | Pai                                | Min                                    | Max                  | Units                |      |  |
|--------|------------------------------------|----------------------------------------|----------------------|----------------------|------|--|
| Vcc    | Supply Voltage                     | Operating                              | 1.65                 | 5.5                  | V    |  |
|        |                                    | V <sub>cc</sub> =1.65V to 1.95V        | 0.65×V <sub>CC</sub> |                      |      |  |
| Vih    | High-Level Input Voltage           | V <sub>CC</sub> =2.3V to 2.7V          | 1.7                  |                      | V    |  |
| VIH    | r ligit-Level illiput voltage      | V <sub>CC</sub> =3V to 3.6V            | 2                    |                      | _ v  |  |
|        |                                    | V <sub>CC</sub> =4.5V to 5.5V          | 0.7×Vcc              |                      |      |  |
|        |                                    | V <sub>CC</sub> =1.65V to 1.95V        |                      | 0.35×V <sub>CC</sub> |      |  |
| VIL    | Low-Level Input Voltage            | V <sub>CC</sub> =2.3V to 2.7V          |                      | 0.7                  | V    |  |
| VIL    | Low-Level Input voltage            | V <sub>CC</sub> =3V to 3.6V            |                      | 0.8                  | _ v  |  |
|        |                                    | V <sub>CC</sub> =4.5V to 5.5V          |                      | 0.3×Vcc              |      |  |
| Vı     | Inpu                               | ıt Voltage                             | 0                    | 5.5                  | V    |  |
| Vo     | Outp                               | ut Voltage                             | 0                    | Vcc                  | V    |  |
|        |                                    | V <sub>CC</sub> =1.65V                 |                      | -4                   |      |  |
|        |                                    | Vcc=2.3V                               |                      | -8                   |      |  |
| Юн     | High-Level Output Current          | V 0V                                   |                      | -16                  | mA   |  |
|        |                                    | Vcc=3V                                 |                      | -24                  |      |  |
|        |                                    | Vcc=4.5V                               |                      | -32                  |      |  |
|        |                                    | V <sub>CC</sub> =1.65V                 |                      | 4                    |      |  |
|        |                                    | Vcc=2.3V                               |                      | 8                    |      |  |
| loL    | Low-Level Output Current           | V 9/                                   |                      | 16                   | mA   |  |
|        |                                    | Vcc=3V                                 |                      | 24                   | 1    |  |
|        |                                    | Vcc=4.5V                               |                      | 32                   |      |  |
| Δt/Δν  |                                    | V <sub>CC</sub> =1.8V±0.15V, 2.5V±0.2V |                      | 20                   |      |  |
|        | Input Transition Rise or Fall Rate | V <sub>CC</sub> =3.3V±0.3V             |                      | 10                   | ns/V |  |
|        |                                    | V <sub>CC</sub> =5V±0.5V               |                      | 5                    | -    |  |
| TA     | Operating Free-air Temperature     | All Other Packages                     | -40                  | 125                  | °C   |  |

<sup>(1)</sup> All unused digital inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation.



### **Electrical Characteristics**

V<sub>CC</sub>=1.65V to 5.5V, FULL=-20°C to +85°C. Typical values are at TA=+25°C (unless otherwise noted)

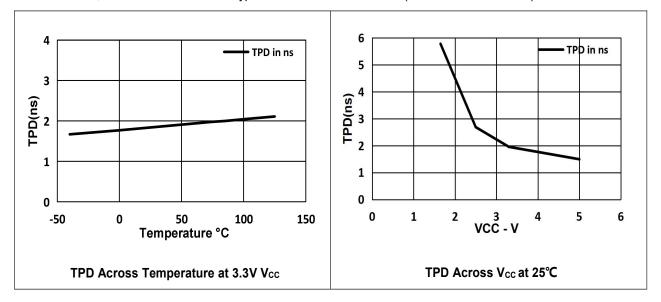
| Parameter             | Symbol   | <b>Test Conditions</b>                                                         | Vcc              | TA   | Min    | Тур | Max  | Units |
|-----------------------|----------|--------------------------------------------------------------------------------|------------------|------|--------|-----|------|-------|
|                       |          | Output                                                                         |                  |      |        |     |      |       |
|                       |          | l₀н=—100µА                                                                     | 1.65V<br>to 5.5V | FULL | Vcc-0. |     |      | V     |
|                       |          | loн=-4mA                                                                       | 1.65V            | FULL | 1.2    |     |      | V     |
| Output High Voltage   | Vон      | юн <b>=</b> —8mA                                                               | 2.3V             | FULL | 1.9    |     |      | V     |
|                       |          | I <sub>OH</sub> =-16mA                                                         | 0) (             | FULL | 2.4    |     |      | V     |
|                       |          | I <sub>OH</sub> =-24mA                                                         | 3V               | FULL | 2.3    |     |      | V     |
|                       |          | I <sub>OH</sub> =-32mA                                                         | 4.5V             | FULL | 3.8    |     |      | V     |
|                       |          | l <sub>OL</sub> =100μA                                                         | 1.65V<br>to 5.5V | FULL |        |     | 0.1  | V     |
|                       | Vol      | loL=4mA                                                                        | 1.65V            | FULL |        |     | 0.45 | V     |
|                       |          | loL=8mA                                                                        | 2.3V             | FULL |        |     | 0.3  | V     |
| Output Low Voltage    |          | lo∟=16mA                                                                       | 21.6             | FULL |        |     | 0.4  | V     |
|                       |          | lo∟=24mA                                                                       | 3V               | FULL |        |     | 0.65 | V     |
|                       |          | l <sub>oL</sub> =32mA                                                          | 4.5V             | FULL |        |     | 0.65 | V     |
| Off-State Current     | off      | V <sub>I</sub> or V <sub>O</sub> =5.5V                                         | 0V               | FULL |        |     | ±25  | μA    |
| 1                     | <u> </u> | Input                                                                          |                  |      |        |     |      |       |
| Input Leakage Current | h        | V <sub>i</sub> =5.5V or GND                                                    | 0V to<br>5.5V    | FULL |        |     | ±5   | μA    |
| Input Capacitance     | Cı       | Vi=Vcc or GND                                                                  | 3.3V             | FULL |        | 4   |      | pF    |
|                       |          | Power Supply                                                                   |                  |      |        |     |      |       |
| Power Supply Range    | Vcc      |                                                                                | 1.65V<br>to 5.5V | FULL | 1.65   |     | 5.5  | V     |
| Power Supply Current  | lcc      | V <sub>I</sub> =V <sub>CC</sub> or GND, I <sub>O</sub> =0                      |                  | FULL |        |     | 10   | μA    |
| Delta Power Current   | ΔΙσο     | One Input at V <sub>CC</sub> – 0.6V,<br>Other Inputs at V <sub>CC</sub> or GND | 3V to 5.5V       | FULL |        |     | 500  | μA    |

<sup>1)</sup> All unused digital inputs of the device must be held at  $V_{CC}$  or GND to ensure proper device operation.

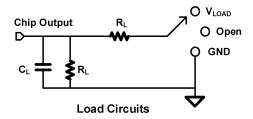
Switching Characteristics Over recommended operating free-air temperature range,  $C_L$ =30pF or 50 pF (unless otherwise noted)

|             |             |            |                       |         | -                    | 20°C to +8 | 5°C                  |        |                     |       |       |
|-------------|-------------|------------|-----------------------|---------|----------------------|------------|----------------------|--------|---------------------|-------|-------|
| Parameter   | From(Input) | To(Output) | V <sub>cc</sub> =1.8\ | /±0.15V | V <sub>cc</sub> =2.5 | V±0.2V     | V <sub>cc</sub> =3.3 | V±0.3V | V <sub>cc</sub> =5V | ±0.5V | Units |
|             |             |            | Min                   | Max     | Min                  | Max        | Min                  | Max    | Min                 | Max   |       |
| <b>t</b> pd | A or B      | Y          | 1                     | 9       | 1                    | 3.8        | 1                    | 3.8    | 1                   | 3.3   | ns    |

### **Operating Characteristics**


TA=- 20°C to +85°C

|                 | Parameter                     | Test       | Vcc=1.8V | Vcc=2.5V | Vcc=3.3V | Vcc=5V | Units |
|-----------------|-------------------------------|------------|----------|----------|----------|--------|-------|
|                 |                               | Conditions | Тур      | Тур      | Тур      | Тур    |       |
| C <sub>pd</sub> | Power Dissipation Capacitance | f=10Mhz    | 23       | 23       | 23       | 29     | pF    |

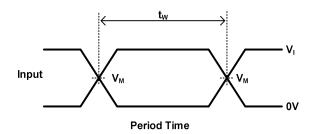


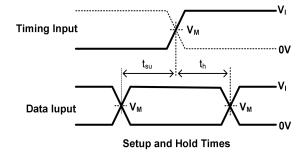

### **Typical Characteristics**

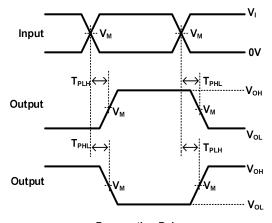
V<sub>CC</sub>=1.65V or 5.5V, FULL=-20°C to +85°C. Typical values are at TA=+25°C (unless otherwise noted)



### **Parameter Measurement Information**





| TEST                               | S1    |
|------------------------------------|-------|
| TPHL/TPLH                          | OPEN  |
| Tplz/Tpzl                          | VLOAD |
| T <sub>PHZ</sub> /T <sub>PZH</sub> | GND   |


|            | INPUTS |                                |       |       |      |      |            |
|------------|--------|--------------------------------|-------|-------|------|------|------------|
| Vcc        | Vı     | T <sub>r</sub> /T <sub>f</sub> | Vм    | VLOAD | CL   | R∟   | <b>V</b> A |
| 1.8V±0.15V | Vcc    | ≤2ns                           | Vcc/2 | 2×Vcc | 30pF | 500Ω | 0.15V      |
| 2.5V±0.15V | Vcc    | ≤2ns                           | Vcc/2 | 2×Vcc | 30pF | 500Ω | 0.15V      |
| 3.3V±0.15V | 3V     | ≤2.5ns                         | 1.5V  | 6V    | 50pF | 500Ω | 0.3V       |
| 5V±0.15V   | Vcc    | ≤2.5ns                         | Vcc/2 | 2×Vcc | 50pF | 500Ω | 0.3V       |



### Parameter Measurement Information(Continued)







Propagation Delay for Output and Inverted Output

Enable and Disable Times Low-And High-Level Enabling

Notes:A.  $C_L$  includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z = 50.

- D. The outputs are measured one at a time, with one transition per measurement.
- E. t<sub>PLZ</sub> and t<sub>PHZ</sub> are the same as t<sub>dis</sub>.
- F.  $t_{\text{PZL}}$  and  $t_{\text{PZH}}$  are the same as  $t_{\text{en.}}$
- G.  $t_{PLH}$  and  $t_{PHL}$  are the same as  $t_{pd}$ .
- H. All parameters and waveforms are not applicable to all device.

# Detailed Description Overview

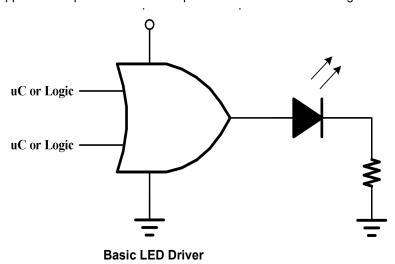
The MSN74AHC1G32DxxR device contains one 2-input positive OR gate device and performs the Boolean function Y = A + B or  $Y = \overline{A \cdot B}$ . This device is fully specified for partial-power-down applications using  $I_{off}$ . The  $I_{off}$  circuitrydisables the outputs, preventing damaging current backflow through the device when it is powered down. The  $I_{off}$  feature allows voltages on the inputs and outputs, when  $V_{CC}$  is 0 V.

### **Functional Block Diagram**





### **Feature Description**

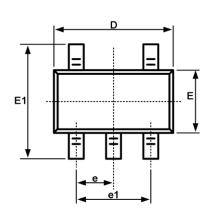

- Wide operating voltage range.
- Operates from 1.65 V to 5.5 V.
- Allows down voltage translation.
- Inputs accept voltages to 5.5 V.
- $l_{\text{off}}$  feature allows voltages on the inputs and outputs, when  $V_{\text{CC}}$  is 0 V.

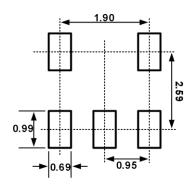
### **Device Functional Modes**

| Input | S | Output |  |  |
|-------|---|--------|--|--|
| Α     | В | Y      |  |  |
| Н     | X | L      |  |  |
| X     | Н | L      |  |  |
| L     | L | Н      |  |  |

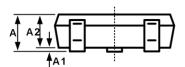
### **Application Note**

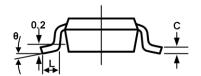
The MSN74AHC1G32DxxR is a high drive CMOS device that can be used for implement OR logic with a high output drive ,such as an LED application. It can produce 24-mA of drive current at 3.3V making it Ideal for driving multiple outputs and good for high speed applications up to 100Mhz. The inputs are 5.5-V tolerant allowing translation down to Vcc





This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads, so routing and load conditions should be considered to prevent ringing.

Each VCC pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1-µF capacitor is recommended. If there are multiple VCC pins, then a 0.01-µF or 0.022-µF capacitor is recommended for each power pin. It is ok to parallel multiple bypass capacitors to reject different frequencies of noise. A 0.1-µF and 1-µF capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

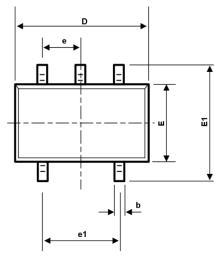


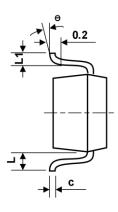


# Package Outline SOT23-5

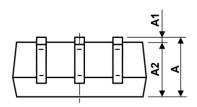




Recommended Land Pattern (Unit: mm)





| Symbol | Dimensions I | n Millimeters | Dimensions In Inches |       |  |
|--------|--------------|---------------|----------------------|-------|--|
|        | Min          | Max           | Min                  | Max   |  |
| A      | 1.050        | 1.250         | 0.041                | 0.049 |  |
| A1     | 0.000        | 0.100         | 0.000                | 0.004 |  |
| A2     | 1.050        | 1.150         | 0.041                | 0.045 |  |
| b      | 0.300        | 0.500         | 0.012                | 0.020 |  |
| С      | 0.100        | 0.200         | 0.004                | 0.008 |  |
| D      | 2.820        | 3.020         | 0.111                | 0.119 |  |
| E      | 1.500        | 1.700         | 0.059                | 0.067 |  |
| E1     | 2.650        | 2.950         | 0.104                | 0.116 |  |
| е      | 0.950BSC     |               | 0.037BSC             |       |  |
| e1     | 1.800        | 2.000         | 0.071                | 0.079 |  |
| L      | 0.300        | 0.600         | 0.012                | 0.024 |  |
| L1     | 0.600REF     |               | 0.024REF             |       |  |
| θ      | 0°           | 8°            | 0°                   | 8°    |  |



# Package Outline SC70-5







| symbol | Dimension I | n Millimeters | Dimensions In Inches |       |
|--------|-------------|---------------|----------------------|-------|
|        | Min         | Max           | Min                  | Max   |
| A      | 0.900       | 1.100         | 0.035                | 0.043 |
| A1     | 0.000       | 0.100         | 0.000                | 0.004 |
| A2     | 0.900       | 1.000         | 0.035                | 0.039 |
| b      | 0.150       | 0.350         | 0.006                | 0.014 |
| С      | 0.110       | 0.175         | 0.004                | 0.007 |
| D      | 2.000       | 2.200         | 0.079                | 0.087 |
| E      | 1.150       | 1.350         | 0.045                | 0.053 |
| E1     | 2.150       | 2.450         | 0.085                | 0.096 |
| е      | 0.650TYP    |               | 0.026TYP             |       |
| e1     | 1.200       | 1.400         | 0.047                | 0.055 |
| L      | 0.525REF    |               | 0.021REF             |       |
| L1     | 0.260       | 0.460         | 0.010                | 0.018 |
| θ      | 0°          | 8°            | 0°                   | 8°    |



### **Attention**

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer'sproducts or equipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents—or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.