high

CURRENT MODE PWM CONTROLLER

DESCRIPTION

The UC284x and UC384x are fixed frequency current mo de PWM controller.

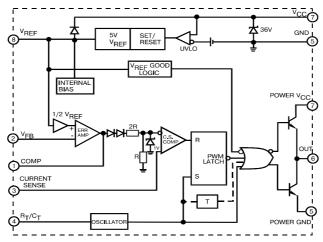
They are specially designed for OFF-Line and DC to DC convert $\mbox{\it er}$ applications with

a minimal external components. Internally implemented circuits in clude a trimmed oscillator for precise duty cycle control, a temper ature compensated reference, high gain error amplifier, current se nsing comparator, and a high current totem pole output ideally suited for driving a power MOSFET. Protection circuitry includes built un der voltage lockout and current limiting.

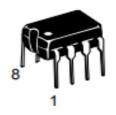
The UC2842/44, UC3842/44 have UVLO thresholds of 16 V (on) a nd 10 V (off).

The corresponding thresholds for the UC2843/45, UC3843/45 are 8.4 V (on) and 7.6V (off). The UC2842/43, UC3842/43 can operate within 100% duty cycle.

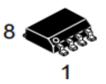
The UC2844/45, UC3844/45 can operate within 50% duty cycle. The UC2842/44/44/45 is characterized for operation from T_A = -40° C to 85°C.

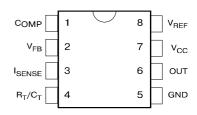

The UC3842/43/44/45 is characterized for operation from $T_A = 0^{\circ}$ C to 70° C.

FEATURES


- · Low Start-Up and Operating Current
- High Current Totem Pole Output
- Under voltage Lockout With Hysteresis
- Operating Frequency Up To 500KHz

BLOCK DIAGRAM


(toggle flip flop used only in UC2844/45, UC3844/45)



DIP8

SOP8

PIN CONNECTION (TOP VIEW)

Examples

型号	封装	私印	MTO OF	WLO OFF	Maximum DutyCycle
UC2842BD1R2G-TUDI	SOP8	VC2842B	16. OV	10. OV	«100%
UC2842D8TR-TUDI	SOP8	VC2842	16. OV	10. OV	<100
UC2843BD1R2G-TUDI	SOP8	VC2843B	8. 4V	7.6V	《50%
UC2843D8TR-TUDI	SOP8	VC2843	8. 4V	7.67	<50
UC2844BD1R2G-TUDI	SOP8	UC2844B	16. OV	10. OV	«100%
UC2844D8TR-TUDI	SOP8	VC2844	16. OV	10. OV	<100
UC2845BD1R2G-TVDI	SOP8	VC2845B	8. 4V	7.6V	《50%
UC2845D8TR-TUDI	SOP8	VC2845	8. 4V	7.6V	<50
UC3842BD1R2G-TUDI	SOP8	VC3842B	16. OV	10. OV	«100%
UC3842BVD1R2G-TUDI	SOP8	UC3842BV	16. OV	10. OV	«100%
UC3842D8TR-TUDI	SOP8	VC3842	16. OV	10. OV	<100
UC3843BD1R2G-TUDI	SOP8	VC3843B	8. 4V	7.6V	《50%
UC3843BVD1R2G-TUDI	SOP8	UC3843BV	8. 4V	7.6V	《50%
UC3843D8TR-TUDI	SOP8	VC3843	8. 4V	7.6V	<50
UC3844BD1R2G-TUDI	SOP8	VC3844B	16. OV	10. OV	«100%
UC3844BVD1R2G-TUDI	SOP8	UC3844BV	16. OV	10. OV	«100%
UC3844D8TR-TUDI	SOP8	VC3844	16. OV	10. OV	<100
UC3845BD1R2G-TUDI	SOP8	VC3845B	8. 4V	7.6V	《50%
UC3845BVD1R2G-TUDI	SOP8	UC3845BV	8. 4V	7.67	《50%
UC3845D8TR-TUDI	SOP8	VC3845	8. 4V	7.6V	<50
UC2842BNG-TUDI	DIP8	UC2842BNG	16. OV	10. OV	«100%
UC2842N-TUDI	DIP8	UC2842N	16. OV	10. OV	<100
UC2843BNG-TUDI	DIP8	UC2843BNG	8. 4V	7.67	《50%
UC2843N-TUDI	DIP8	VC2843N	8. 4V	7.67	<50
UC2844BNG-TUDI	DIP8	UC2844BNG	16. OV	10. OV	«100%
UC2844N-TUDI	DIP8	UC2844N	16. OV	10. OV	<100
UC2845BNG-TUDI	DIP8	UC2845BNG	8. 4V	7.67	《50%
UC2845N-TVDI	DIP8	VC2845N	8. 4V	7.67	<50
UC3842BNG-TUDI	DIP8	UC3842BNG	16. OV	10. OV	《100%
UC3842N-TUDI	DIP8	UC3842N	16. OV	10. OV	<100
UC3843BNG-TUDI	DIP8	UC3843BNG	8. 4V	7.6V	《50%
UC3843N-TVDI	DIP8	UC3843N	8. 4V	7.67	<50
UC3844BNG-TUDI	DIP8	UC3844BNG	16. OV	10. OV	«100%
UC3844N-TVDI	DIP8	UC3844N	16. OV	10. OV	<100
VC3845BNG-TVDI	DIP8	UC3845BNG	8. 4V	7.6V	《50%
UC3845N-TVDI	DIP8	UC3845N	8. 4V	7. 6V	<50

PIN FUNCTION

N	FUNCTION	DESCRIPTION
1	COMP	This pin is the Error Amplifier output and is made for loop compensation.
2	V _{FB}	This is the inverting input of the Error Amplifier. It is normally connected to the switching power supply output through a resistor divider.
3	I _{SENSE}	A voltage proportional to inductor current is connected to this input. The PWM uses this information to terminate the output switch conduction.
4	R _T /C _T	The oscillator frequency and maximum Output duty cycle are programmed by connecting resistor R_T to V_{ref} and capacitor C_T to ground.
5	GROUND	This pin is the combined control circuitry and power ground.
6	OUTPUT	This output directly drives the gate of a power MOSFET. Peak currents up to 1A are sourced and sink by this pin.
7	V _{cc}	This pin is the positive supply of the integrated circuit.
8	V _{ref}	This is the reference output. It provides charging current for capacitor C _T through resistor R _T .

Absolute Maximum Ratings

Characteristic	Symbol	Value	Unit
Supply Voltage (low impedance source)	Vcc	30	V
Output Current	Io	±1	Α
Input Voltage (Analog Inputs pins 2,3)	V _I	-0.3 to 5.5	V
Error Amp Output Sink Current	I _{SINK (E.A)}	10	mA
Power Dissipation (T _A =25°C)	Po	1	W
Storage Temperature Range	Tstg	-65 to150	°C
Lead Temperature (soldering 5 sec.)	T _L	260	°C

Electrical characteristics (* V_{CC} =15V, R_T =10 $k\Omega$, C_T =3.3nF, T_A =0 0C to +70 0C , unless otherwise specified)

Characteristics	Symbol	Test Condition	Min	Тур	Max	Unit	
Reference Section		1	I		1		
Reference Output Voltage	V_{REF}	T _J = 25°C, I _{REF} = 1 mA	4.9	5.0	5.1	V	
Line Regulation	7 0 112			6.0	20	mV	
Load Regulation	ΔV_{REF}	$1 \text{ mA} \le I_{REF} \le 20 \text{mA}$		6.0	25		
Short Circuit Output Current	I _{SC}	T _A = 25°C		-100	-180	mA	
Oscillator Section	-30	1A 20 0				1	
Oscillation Frequency	f	T _J = 25°C	47	52	57	KHz	
Frequency Change with Voltage	Δf/ΔV _{CC}	12V ≤ V _{CC} ≤ 25 V		0.05	1.0	%	
Oscillator Amplitude	V _(OSC)	(peak to peak)		1.6	1.0	V	
Error Amplifier Section	V (OSC)	(peak to peak)		1.0		·	
Input Bias Current	I _{BIAS}	V _{FB} =3V		-0.1	-2	μА	
Input Voltage	V _{I(E.A)}	V _{pin1} = 2.5V	2.42	2.5	2.58	V	
Open Loop Voltage Gain	A _{VOL}	$2V \le V_0 \le 4V$	65	90	2.00	dB	
Unity Gain Bandwidth	UGBW	T _i =25°C, Note 3	0.5	0.6		MHz	
Power Supply Rejection Ratio	PSRR	12V ≤ V _{CC} ≤ 25 V	60	70		dB	
Output Sink Current	I _{SINK}	$V_{pin2} = 2.7V, V_{pin1} = 1.1V$	2	7		mA	
Output Source Current	I _{SOURCE}	$V_{pin2} = 2.3V, V_{pin1} = 5V$	-0.5	-1.0		mA	
High Output Voltage	V _{OH}	$V_{pin2} = 2.3V$, $R_L = 15KΩ$ to GND	5.0	6.0			
Low Output Voltage	V _{OL}	$V_{pin2} = 2.7V$, $R_L = 15KΩ$ to PIN 8		0.8	1.1	V	
Current Sense Section	V OL	V pin2 2.7 V, TC TORS2 to T TV O		0.0			
Gain	G _V	(Note 1 & 2)	2.85	3.0	3.15	V/V	
Maximum Input Signal	V _{I(MAX)}	V _{pin1} = 5V (Note1)	0.9	1.0	1.1	V	
Supply Voltage Rejection	SVR	12V ≤ V _{CC} ≤ 25 V (Note 1)				dB	
Input Bias Current	I _{BIAS}	V _{pin3} = 3V		-3.0	-10	μА	
Output Section	-517.0	- pino				μ	
Low Output Voltage	V _{OL}	I _{SINK} = 20 mA		0.08	0.4		
zon oaipat tonago	- OL	I _{SINK} = 200 mA		1.4	2.2		
High Output Voltage	V _{OH}	I _{SINK} = 20 mA	13	13.5		V	
3	011	I _{SINK} = 200 mA	12	13.0		_	
Rise Time	t _R	$T_J = 25^{\circ}C, C_L = 1nF \text{ (Note 3)}$		45	150	_	
Fall Time	t _F	$T_J = 25^{\circ}C, C_L = 1nF \text{ (Note 3)}$		35	150	nS	
Undervoltage Lockout Section	<u> </u>	0		II.	L		
Start Theshold	$V_{TH(ST)}$	UC2842/44,UC3842/44	14.5	16.0	17.5		
	(01)	UC2843/45,UC3843/45	7.8	8.4	9.0	V	
Min. Operating Voltage	V _{OPR(min)}	UC2842/44,UC3842/44	8.5	10	11.5		
(After Turn On)	,	UC2843/45,UC3843/45	7.0	7.6	8.2	V	
PWM Section			ı				
Max. Duty Cycle	D _(MAX)	UC2842/43,UC3842/43	95	97	100		
		UC2844/45,UC3844/45	47	48	50	%	
Min. Duty Cycle	D _(MAX)				0	1	
Total Standby Current			•				
Start-Up Current	I _{ST} UC3842/43/44/45			0.17	0.3	A	
Operating Supply Current	I _{CC (OPR)}	$V_{pin3} = V_{pin2} = 0V$		13	17	- mA	
Zener Voltage	Vz	I _{CC} =25 mA	30	38		V	

^{*} Adjust V_{CC} above the start threshold before setting it to 15V. Note 1: Parameter measured at trip point of latch with V_{pin2} =0. Note 2: Gain defined as $A=\Delta V_{pin1}/\Delta V_{pin3}$; $0 \le V_{pin3} \le 0.8V$. Note 3: These parameters, although guaranteed, are not 100% tested in production.

APPLICATION INFORMATION

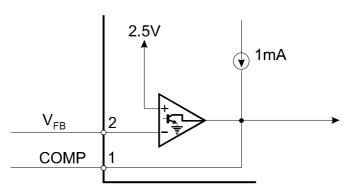


Figure 1. Error Amp Configuration

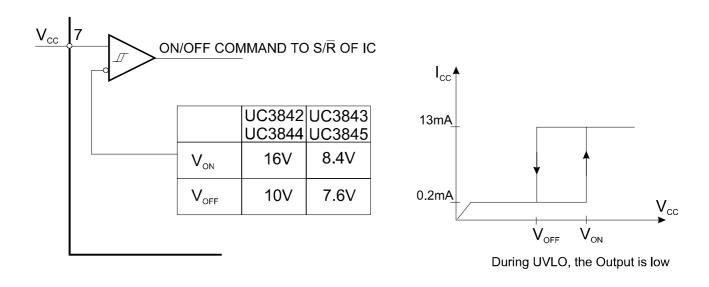


Figure 2. Under voltage Lockout

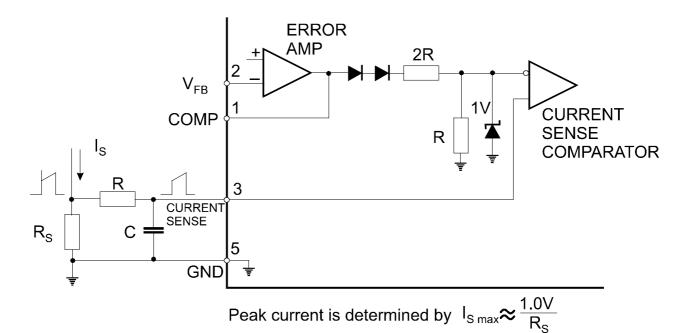


Figure 3. Current Sense Circuit

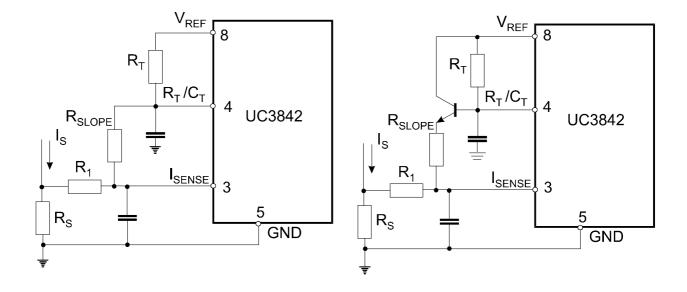
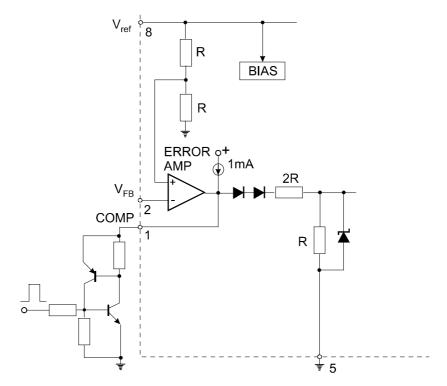
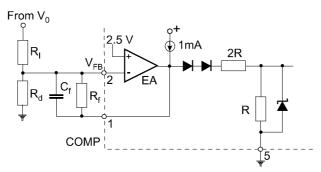
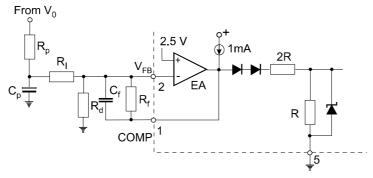




Figure 4. Slope Compensation Techniques



SCR must be selected for a holding current of less than 0.5mA. The simple two transistor circuit can be used in place of the SCR as shown.

Figure 5. Latched Shutdown

Error Amp compensation circuit for stabilizing any current-mode topology except for boost and flyback converters operating with continuous inductor current.

Error Amp compensation circuit for stabilizing current-mode boost and flyback topologies operating with continuous inductor current.

Figure 6. Error Amplifier Compensation

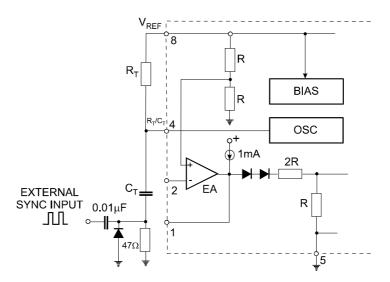


Figure 7. External Clock Synchronization

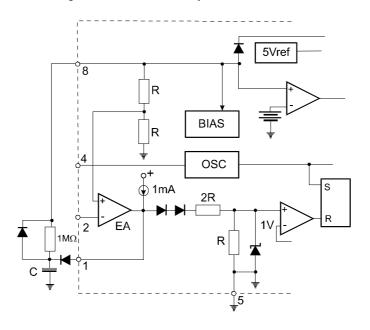


Figure 8. Soft-Start Circuit

TYPICAL PERFORMANCE CHARACTERISTICS

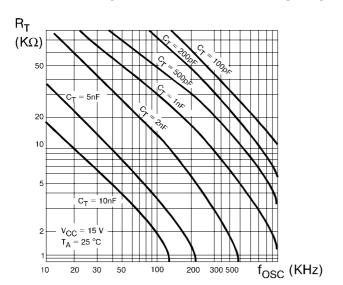


Figure 1. Timing Resistor vs. Oscillator Frequency

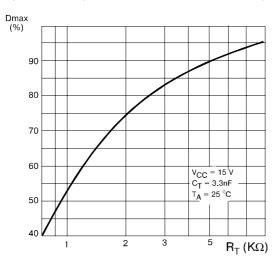


Figure 3. Maximum Output Duty Cycle vs. Timing Resistor (UC3842/43)

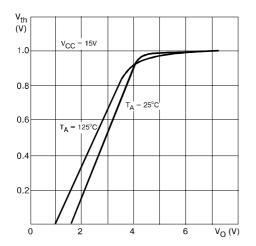


Figure 5. Current Sense Input Threshold vs. Error Amp Output Voltage

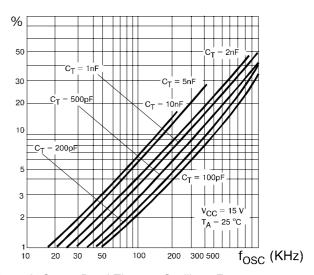


Figure 2. Output Dead-Time vs. Oscillator Frequency

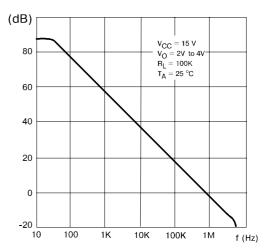


Figure 4. Error Amp Open-Loop Gain vs. Frequency

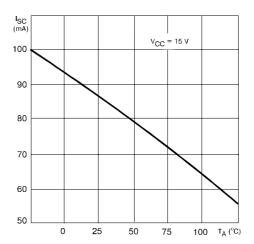
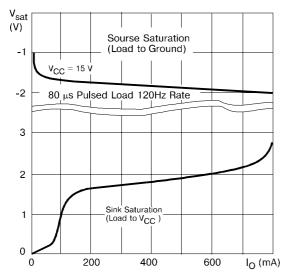



Figure 6. Reference Short Circuit Current vs. Temperature

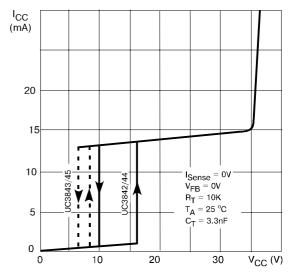


Figure 7. Output Saturation Voltage vs. Load Current $T_A = 25$ °C

Figure 8. Supply Current vs. Supply Voltage

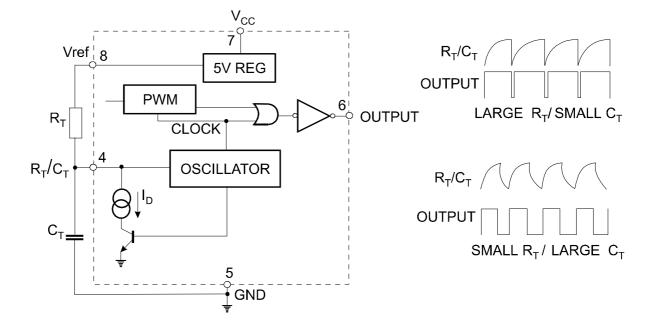
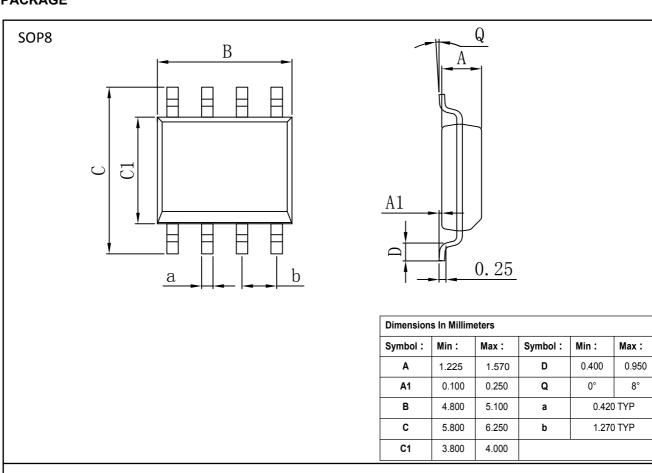
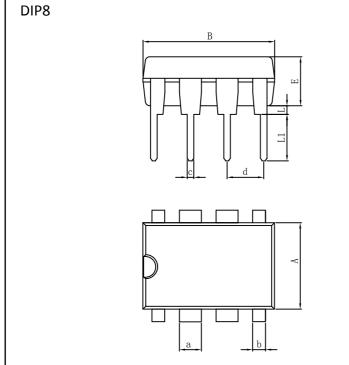




Figure 9. Oscillator and Output Waveforms

PACKAGE

Dimensions In Millimeters							
Symbol :	Min :	Max:	Symbol :	Min :	Max :		
Α	6.100	6.680	L1	3.000	3.600		
В	9.000	9.500	а	1.524 TYP			
D	8.400	9.000	b	0.889 TYP			
D1	7.420	7.820	С	0.457 TYP			
E	3.100	3.550	d	2.540 TYP			
L	0.500	0.700		•			

Important statement:

TUDI Semiconductor Co,Ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information.

Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage.

Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the consequences of the application of these products in these fields.

TUDI Semiconductor Co,Ltd. the performance of the semi conductor products produced by the company can reach the performance indicators that can be applied at the time of sales. the use of testing and other quality control technologies is limited to the quality assurance scope of TUDI semiconductor . Not all parameters of each device need to be tested. The above documents are for reference only, and all are subject to the physical parameters.

Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents.