MSKSEMI 美森科

ESD

TVS

TSS

MOV

GDT

PIFD

SN74LVC1G34DBVR-MS/SN74LVC1G34DCKR-MS

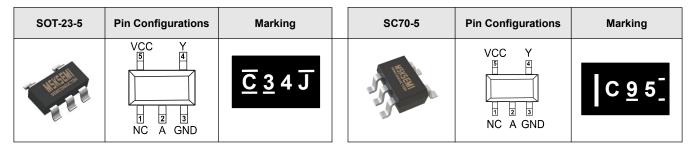
Product specification

General Description

The operating voltage range of the SN74LVC1G34DBVR-MS/SN74LVC1G34DCKR-MS single buffer is 1.65 V to 5.5V.

The SN74LVC1G34DBVR-MS/SN74LVC1G34DCKRMS device contains one buffer and performs the Booleanf unction Y=A.The CMOS device has higt output drive while maintaining low static power dissipation over a broad VCC operating range.

This device is fully specified for partial-power-down applications using loff. The loff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.


Features

- Low Power Consumption, 10-µA Max Icc
- Supports 5V Vcc Operation
- Inputs Accept Voltages to 5.5V
- Max tpd of 3.3 ns at 3.3 V
- ±24mA Output Drive at 3.3 V
- Ioff Supports Partial-Power-Down Mode
- Typical Voнv>2Vat Vcc=3.3 V,Ta=25℃
- Typical Volp<0.8 Vat Vcc=3.3 V,Ta=25°℃

Applications

- AV Receivers
- Audio Docks:Portable
- Blu-ray Players and Home Theater
- Embedded PC
- MP3 Player/Recorder (Portable Audio)
- Personal Digital Assistant(PDA)
- Power:Telecom/Server AC/DC Supply
- Solid State Drive (SSD):Client and Enterprise
- TV:LCD/Digital and High-Definition (HDTV)
- Tablet:Enterprise
- Video Analytics:Server
- Wireless Headset, Keyboard, and Mouse

Pinning and Marking

Pin Functions

Pin		Typo	Description
Name	SOT23-5/SC70-5	Туре	Description
NC	1	_	No internal connection
A	2	I	Input
GND	3	-	Ground
Y	4	0	Output
VCC	5	<u>-</u>	PositiveSupply

Order information

Orderable Device	Package	Packing Option
SN74LVC1G34DBVR-MS	SOT23-5	3000PCS
SN74LVC1G34DCKR-MS	SC70-5	3000PCS

Circuit Diagram

Absolute Maximum Ratings

	Parameter	Min	Max.	Unit	
Vcc	Supply volta	age range	-0.5	6.5	V
VI	Input volta	ge range	-0.5	6.5	٧
Vo	Voltage range applied to any output in the	he high-impedance or power-off state	-0.5	6.5	V
Vo	Voltage range applied to any c	output in the high or low state	-0.5	V _{CC} +0.5	V
lĸ	Input clamp current	V < 0		-50	mA
lok	Output clamp current	V ₀ <0		-50	mA
lo	Continuous ou	utput current		±50	mA
	Continuous current through		±100	mA	
TJ	T _J Junction temperature under bias			150	°C
T _{stg}	Storage tempe	erature range	- 65	150	$^{\circ}$ C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

Symbol	Para	Min	Max	Unit			
Vcc	Supply	y voltage	1.65	5.5	V		
Vı	Input	voltage	0	5.5	V		
Vo	Output	t voltage	0	Vcc	V		
		V _{CC} =1.65V		-4			
		V _{CC} =2.3V		-8			
Юн	High-level output current	High-level output current	High-level output current	V -2V		-16	mA
		Vcc=3V		-24			
		V _{CC} =4.5V		-32			
		V _{CC} =1.65V		4			
		V _{CC} =2.3V		8			
loL	Low-level output current	V -2V		16	mA		
		Vcc=3V		24			
		V _{CC} =4.5V		32			
TA	Operating free	-air temperature	-40	125	$^{\circ}\mathbb{C}$		

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

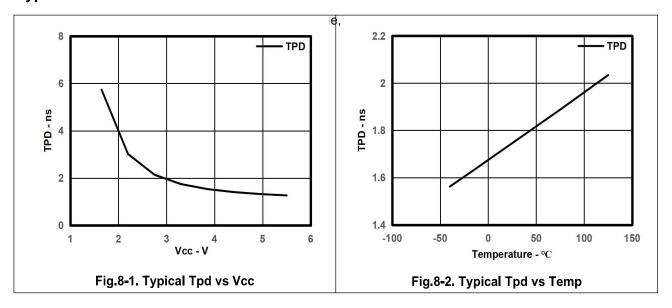
Electrical Characteristics

Vcc=5.0V or 3.3V, Typical values are at T_A =+25°C. (unless otherwise noted).

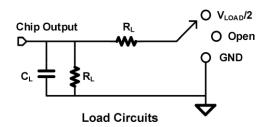
_		T (0 1111		-4	0°C to 85	°C	-4	0°C to 12	5°C		
Parai	meter	Test Conditions	Vcc	Min	Тур	Max	Min	Тур	Max	Unit	
		I _{OH} =–100 μA	1.65 V to 5.5 V	Vcc-0.1			V _{cc} -0.1				
		I _{OH} =–4 mA	1.65 V	1.2			1.2				
.,		I _{OH} =–8 mA	2.3 V	1.9			1.9				
V	ОН	I _{он} =–16 mA	0.1/	2.4			2.4			V	
		I _{ОН} =—24 mA	3 V	2.3			2.3				
		I _{он} =–32 mA	4.5 V	3.8			3.8				
		I _{OL} =100 μA	1.65 V to 5.5 V			0.1			0.1		
		1G04 I _{OL} =4 mA	1.65 V			0.45			0.45		
,,,	,	I _{OL} =8 mA	2.3 V			0.3			0.3	.,	
V	OL	I _{OL} =16 mA	0.14			0.4			0.4	V	
		I _{OL} =24 mA	3 V			0.55			0.55		
		I _{OL} =32 mA	4.5 V			0.55			0.55		
lı	A input	V _I =5.5 V or GND	0 to 5.5 V			±5			±5	μA	
I,	off	V _I or V _O =5.5 V	0			±10			±10	μA	
lo	cc	V _I =5.5 V or GND, I _O =0	1.65 V to 5.5 V			10			10	μA	
ΔΙ	lcc	One input at V_{CC} – 0.6 V, Other inputs at V_{CC} or GND	3 V to 5.5 V			500			500	μΑ	
(Ci	V _I =V _{CC} or GND	3.3 V		5			5		рF	

⁽¹⁾ All unused digital inputs of the device must be held at V_{cc} or GND to ensure proper device operation

Vcc=5.0V or 3.3V, Typical values are at T_A =+25°C. (unless otherwise noted).

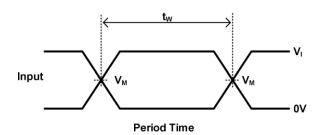

						-40°C t	o 125°C				
Parameter	From (Input)	To (Output)		1.8 V 15 V		2.5 V .2 V		3.3 V 3 V	V _{cc} : ± 0	=5 V .5 V	Unit
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{pd}	A	Y	3.9	9.5	1.4	4.5	1	3.3	1	3.0	ns

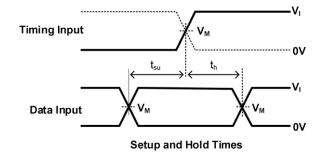
T_A=25°C

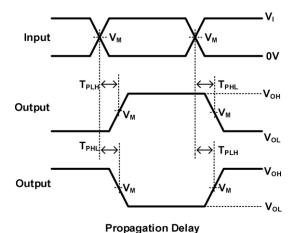

	Parameter		Took Conditions	V _{cc} =1.8 V	V _{CC} =2.5 V	V _{CC} =3.3 V	V _{cc} =5 V	1114
			Test Conditions	Тур	Тур	Тур	Тур	Unit
	C_{pd}	Power dissipation capacitance	f=10 MHz	17	28	33	47	pF

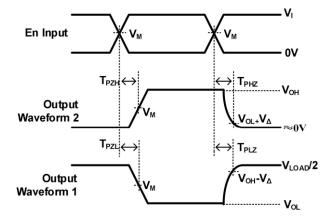
Typical Characteristics

Parameter Measurement Information




TEST	S1
Трнь/Трьн	OPEN
T _{PLZ} /T _{PZL}	V _{LOAD}
T _{PHZ} /T _{PZH}	GND


Vcc	INPUTS		S V _M V _{LOAD}		CL	R∟	VΔ
V CC	Vı	T _r /T _f	▼ WI	▼ LOAD	OL	I L	₩Δ
1.8V±0.15V	Vcc	≤2ns	Vcc/2	2×V _{CC}	30pF	1kΩ	0.15V
2.5V±0.15V	Vcc	≤2ns	V _{CC} /2	2×V _{CC}	30pF	500Ω	0.15V
3.3V±0.15V	3V	≤2.5ns	1.5V	6V	50pF	500Ω	0.3V
5V±0.15V	Vcc	≤2.5ns	V _{CC} /2	2×V _{CC}	50pF	500Ω	0.3V



Parameter Measurement Information(Continued)

for Output and Inverted Output Notes: A. C_L includes probe and jig capacitance.

Enable and Disable Times Low-And High-Level Enabling

B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.

- D. The outputs are measured one at a time, with one transition per measurement. E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.

Waveform 2 is for an output with internal conditions such that the F. t_{PZL} and t_{PZH} are the same as t_{en}. output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z =50.

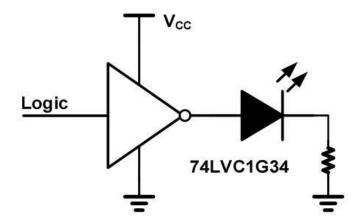
- G. tplh and tphl are the same as tpd.
 - H. All parameters and waveforms are not applicable to all device.

Feature Description

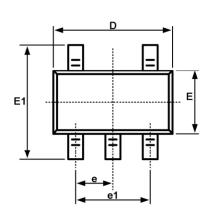
The device is designed for 1.65V to 5.5V Vcc operation and it allows down voltage translation from 5V to 3.3V, or 3.3V to 1.8V. The input voltage of SN74LVC1G34DBVR-MS/SN74LVC1G34DCKR-MS accepts to 5.5V.

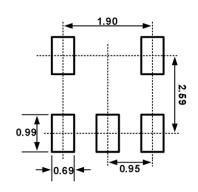
The SN74LVC1G34DBVR-MS/SN74LVC1G34DCKR-MS has power-down protection (off) and Schmitt-trigger input. loff feature allows voltage on the inputs and outputs when Vcc is 0 V, and is able to reduce leakage when Vcc is 0 V. Schmitt-Trigger input can improve the noise immunity capability

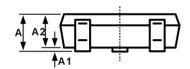
Device Functional Modes

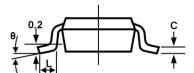

Input A	OutputY
Н	Н
L	L

Application Information

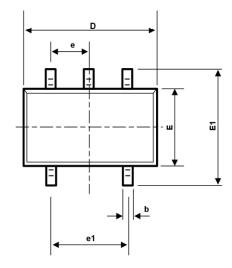

The SN74LVC1G34DBVR-MS/SN74LVC1G34DCKR-MS is a high drive CMOS device that can be used for implementing inversion logic with a high output drive, such as an LED application. It can produce 24 mA of drive current at 3.3 V making it Ideal for driving multiple outputs and good for high-speed applications up to 100 Mhz. The inputs are 5.5 V tolerant allowing it to translate down to V_{CC}.

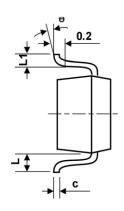

Typical Power Button Circuit

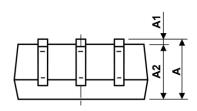



Package Outline SOT23-5

Recommended Land Pattern (Unit: mm)






Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
Е	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950	BSC	0.037	7BSC	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
L1	0.600		0.024REF		
θ	0°	8°	0°	8°	

Package Outline SC70-5

avente al	Dimension I	n Millimeters	Dimension	s In Inches
symbol	Min	Max	Min	Max
A	0.900	1.100	0.035	0.043
A1	0.000	0.100	0.000	0.004
A2	0.900	1.000	0.035	0.039
b	0.150	0.350	0.006	0.014
С	0.110	0.175	0.004	0.007
D	2.000	2.200	0.079	0.087
E	1.150	1.350	0.045	0.053
E1	2.150	2.450	0.085	0.096
е	0.650)TYP	0.026	6TYP
e1	1.200	1.400	0.047	0.055
Ĺ	0.525	REF	0.021REF	
L1	0.260	0.460	0.010	0.018
θ	0°	8°	0°	8°

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer'sproducts or equipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, refer to the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.