

## **E29-T Series User Manual**

PAN3031 433/470MHz 160mW Wireless Module



## 成都亿佰特电子科技有限公司 Chengdu Ebyte Electronic Technology Co.,Ltd.

## 目录

| Disclaimer and Copyright Notice                   |    |
|---------------------------------------------------|----|
| Chapter 1 Overview                                | 5  |
| 1.1 Introduction                                  | 5  |
| 1.2 Features                                      | 5  |
| 1.3 Application                                   | 6  |
| Chapter 2 Specification and Parameter             |    |
| 2.1 RF parameters                                 | 6  |
| 2.2 Electrical parameters                         | 7  |
| 2.3 Hardware Parameters                           | 7  |
| Chapter 3 Size and Pin Definition                 | 8  |
| 3.1 E29-400T22S Dimension and Pin definition      | 8  |
| 3.2 E29-400T22D Dimension and Pin definition      | 9  |
| Chapter 4 Recommended Connection Diagram          | 10 |
| Chapter 5 Function Description                    | 11 |
| 5.1 Fixed Transmission                            |    |
| 5.2 Broadcasting Transmission                     | 11 |
| 5.3 Broadcasting Address                          | 12 |
| 5.4 Listening Address                             | 12 |
| 5.5 Module Reset                                  | 12 |
| 5.6 AUX Description                               | 12 |
| 5.6.1 Indication of UART Output                   | 12 |
| 5.6.2 Indication of Wireless Transmitting         | 13 |
| 5.6.3 The module is being configured              | 13 |
| 5.6.4 Notes for AUX                               | 13 |
| Chapter 6 Working Mode                            | 14 |
| 6.1 Notes for Mode Switching                      | 14 |
| 6.2 Normal mode (Mode 0)                          | 15 |
| 6.3 WOR mode (Mode 1)                             | 15 |
| 6.4 Configuration mode (Mode 2)                   | 15 |
| 6.5 Deep sleep mode (Mode 3)                      | 16 |
| Chatper 7 Register read and write control         | 16 |
| 7.1 Command format                                | 16 |
| 7.2 Register description                          | 17 |
| 7.3 Factory default parameter                     | 19 |
| Chatper 8 AT Command                              | 20 |
| 8.1 AT command table                              | 20 |
| 8.2 AT parameter analysis                         | 21 |
| 8.3 IAP upgrade Notes                             | 22 |
| Chatper 9 Repeater networking mode                |    |
| Chapter 10 Configuration instructions on computer |    |
| Chapter 11 Hardware design                        |    |
| Chapter 12 FAQ                                    | 25 |
| 12.1 Communication range is too short             |    |



| 12.2 Module is easy to be damaged    | 25 |
|--------------------------------------|----|
| 12.3 BER(Bit Error Rate) is high     | 26 |
| Chapter 13 Welding Work Instructions | 27 |
| 13.1 Reflow soldering temperature    | 27 |
| 13.2 Reflow soldering curv           | 28 |
| Chatper 14 Retaled series            | 28 |
| Chapter 15 Antenna recommendation    | 29 |
| 15.1 Antenna recommendation          | 29 |
| Chapter 16 Bulk Packing              | 30 |
| 15.1 E29-400T22S bulk packing        | 30 |
| 15.1 E29-400T22D bulk packing        | 30 |
| Revision history                     | 31 |
| About us                             | 31 |
|                                      |    |



### **Disclaimer and Copyright Notice**

The information in this document, including the URL address for reference, is subject to change without notice. The document is provided "as is" without any guarantee responsibility, including any guarantee for marketability, suitability for a specific purpose, or non-infringement, and any guarantee for any proposal, specification or sample mentioned elsewhere. This document does not bear any responsibility, including the responsibility for infringement of any patent rights caused by the use of the information in this document. This document does not grant any license for the use of intellectual property rights in estoppel or other ways, whether express or implied.

The test data obtained in the article are all obtained by the Ebyte laboratory, and the actual results may vary slightly.

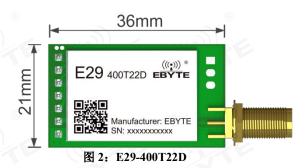
We hereby declared that all brand names, trademarks and registered trademarks mentioned in this document are the property of their respective owners.

The final interpretation right belongs to Chengdu Ebyte Electronic Technology Co., Ltd.

#### Notice:

Due to product version upgrades or other reasons, the contents of this manual may be changed. Ebyte Electronic Technology Co., Ltd. reserves the right to modify the contents of this manual without any hint or noticet. This manual is only used as a guide. Chengdu Ebyte Electronic Technology Co., Ltd. makes every effort to provide accurate information in this manual. However, we does not guarantee that the contents of the manual are completely free of errors. All statements, information and suggestions in this manual do not constitute any express or implied guarantee.




## **Chapter 1 Overview**

### 1.1 Introduction

Based on PANCHIP's RF chip PAN3031, the E29-T series products are a new generation of wireless serial port module (UART) independently developed by Chengdu Ebyte Electronics Co., Ltd. It's with a variety of transmission methods, working in the frequency band  $410.125 \sim 493.125 \text{MHz}$  (default 433.125 MHz), and using industrial-grade high-precision 32MHz crystal oscillator.

The E29-T series adopts a new generation of ChirpIoT<sup>TM</sup> spread spectrum technology, supports half-duplex wireless communication, has the characteristics of high anti-interference and high sensitivity; It also has air wake-up, wireless configuration, automatic relay, communication key, AT Command, IAP upgrade and other functions; This series of modules is mainly for application in smart home, industry, scientific research, medical and short-distance wireless communication equipment. It supports packet length setting, and customized development service is also available.





### 1.2 Features

- Support AT command, more convenient for use.
- Support IAP upgrade, more convenient to update firmware;
- ChirpIoT<sup>TM</sup>-based modulation method brings longer communication distance and stronger anti-interference ability;
- Support automatic relay networking, multi-level relay is suitable for ultra-long-distance communication, and multiple networks run simultaneously in the same area;
- User can set the communication key by himself and the key cannot be read by others. It greatly improving the confidentiality of user data;
- Support RSSI signal strength indicator function for evaluating signal quality, improving communication network, and ranging;
- Support wireless parameter configuration, send command packets wirelessly, remotely configure or read wireless module parameters;
- Support wake-up over the air, that is ultra-low power consumption, suitable for battery-powered applications;
- Support point to point transmission, broadcast transmission, and channel listening;
- Support deep sleep, the power consumption of the whole module is about 2uA in this mode;
- Support global license-free ISM 433MHz frequency band, support 470MHz meter reading frequency band;



- Under ideal conditions, the communication distance can reach 5km;
- The parameters are saved after power-off, and the module will work according to the set parameters after power-on;
- Efficient watchdog design, once an exception occurs, the module will automatically restart and continue to work according to the previous parameter settings;
- Support 2.4k~16.4kbps air data rate transmission;
- Support 2.6~5.5V power supply, power supply greater than 5V guarantees the best performance;
- Industrial standard design, supporting long-term use at -40~+85°C;

### 1.3 Application

- Home security alarm and remote keyless entry;
- Smart home and industrial sensors;
- Wireless alarm security system;
- Building automation solutions;
- Wireless industrial-grade remote control;
- Health care products;
- Advanced Meter Reading Architecture (AMI);

## **Chapter 2** Specification and Parameter

### 2.1 RF parameters

| DE                    | TT24 | Model No.       |                 | Domonlo                                                                                                         |
|-----------------------|------|-----------------|-----------------|-----------------------------------------------------------------------------------------------------------------|
| RF parm               | Unit | E29-400T22S     | E29-400T22D     | Remark                                                                                                          |
| Max. Tx power         | dBm  | 21.5~22         | 21.5~22         | -                                                                                                               |
| Receiving sensitivity | dBm  | -125            | -125 -125       |                                                                                                                 |
| Tested range          | М    | 5Km             |                 | Test condition: clear and open area, antenna gain: 5dBi, antenna placement height: 2.5m, air data rate: 2.4kbps |
| Operating frequency   | MHz  | 410.125~493.125 | 410.125~493.125 | Support ISM frequency band                                                                                      |
| Air data rate         | bps  | 2.4K~16.4K      |                 | To control via user's program                                                                                   |
| Blocking<br>Power     | dBm  | 10              |                 | Less chance of burning when used at close range                                                                 |

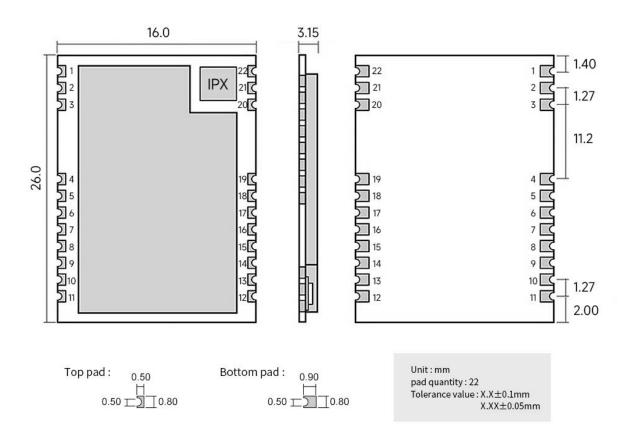


| TV maskat |      |     | Subpackage 32/64/128/240 |
|-----------|------|-----|--------------------------|
| TX packet | Btye | 240 | bytes can be sent by     |
| length    |      |     | command setting          |

## 2.2 Electrical parameters

| Electrical manne |                 | Uni      | Mod         | lel No.     | Domest                           |
|------------------|-----------------|----------|-------------|-------------|----------------------------------|
| Electric         | Electrical parm |          | E29-400T22S | E29-400T22D | Remark                           |
| Operatin         | g voltage       | V        | 2.6~5.5     | 2.6~5.5     | ≥5V ensures output power, and it |
| - F              |                 |          |             |             | may be burning down over 5.5V.   |
| Communic         | cation level    | $ _{V} $ | 2           | .3V         | For 5V TTL, it may be burning    |
| Communic         | Zation level    | \ \ \    | 3           | .5 V        | down                             |
|                  | TX current      | mA       | 110         | 110         | Instant power consumption        |
| Power            | RX current      | 4        | 15          | 1.5         | 15mA @ DCDC mode, 20mA @         |
| consumption      |                 | mA       | 13          | 15          | LDO mode                         |
| Consumption      | Sleep           | uA       | 2           | 2           | software shutdown                |
|                  | current         |          | _           |             |                                  |
|                  | Operating       | °C       | -40∼+85     |             | Industrial grade                 |
| Tomanomotivas    | temperature     |          | -40         | 183         | mdustriai grade                  |
| Temperature      | Storage         | °C       | -40∼+85     |             | Industrial grade                 |
|                  | temperature     |          | -40°~+85    |             | industrial grade                 |

## 2.3 Hardware Parameters

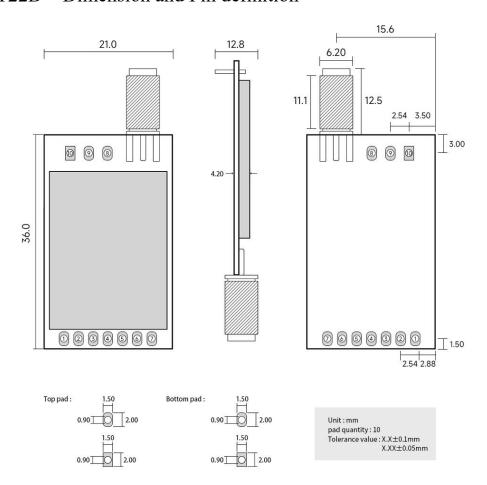

| II                | Mo                              | del No.     | Remark                                  |
|-------------------|---------------------------------|-------------|-----------------------------------------|
| Hardware parm     | E29-400T22S                     | E29-400T22D | Kemark                                  |
| Chipset           | PA                              | N3031       | -                                       |
| Crystal frequency | 32                              | 2MHz        | Industrial grade high precision crystal |
|                   |                                 |             | oscillator                              |
| Modulation        | ChirpIoT <sup>TM</sup>          |             | new-generation ChirpIoT <sup>TM</sup>   |
| Modulation        |                                 |             | modulation technology                   |
| Interface         | 1.27mm Stamp hole 2.54mm header |             | -                                       |
| Communication     | UART serial port                |             | TTLlevel                                |
| Interface         | UART                            | scriai port | TILIEVEI                                |
| TV modrat lamath  | TX packet length 240 Btye       |             | Subpackage 32/64/128/240 bytes can      |
| 1 A packet length |                                 |             | be sent by command setting              |
| Encapsulation     | SMD                             | DIP         | -                                       |
| Cache capacity    | 700 Btye                        |             | -                                       |



| Antenna interface | IPEX/Stamp hole | SMA-K   | Equivalent impedance about 50Ω |
|-------------------|-----------------|---------|--------------------------------|
| Size              | 26 * 16 mm      | 36*21mm | ±0.1mm                         |
| Product Weight    | 2.37g           | 6.24g   | ±0.05g                         |

## **Chapter 3** Size and Pin Definition

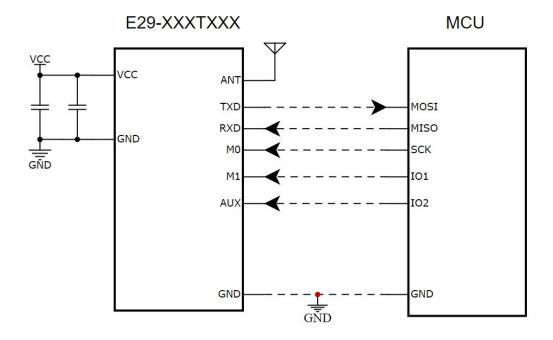
### 3.1 E29-400T22S Dimension and Pin definition




| Pin No. | Pin Name | Pin Direction                                               | Pin Function                                                        |
|---------|----------|-------------------------------------------------------------|---------------------------------------------------------------------|
| 1       | GND      | -                                                           | Module ground                                                       |
| 2       | GND      | -                                                           | Module ground                                                       |
| 3       | GND      | -                                                           | Module ground                                                       |
| 4       | GND      | -                                                           | Module ground                                                       |
| 5       | MO       | Input                                                       | Work with M1 to decide 4 working modes of module (not float, if not |
| 3       | M0       | (pull-up)                                                   | used, could be grounded).                                           |
|         | 3.61     | Input                                                       | Work with M0 to decide 4 working modes of module (not float, if not |
| 6       | M1       | (pull-up)                                                   | used, could be grounded).                                           |
| 7       | RXD      | Input TTL UART inputs, connects to external TXD output pin. |                                                                     |



| 8  | TXD     | Output | TTL UART outputs, connects to external RXD input pin.                 |
|----|---------|--------|-----------------------------------------------------------------------|
|    |         |        | Used to indicate the working status of the module;                    |
| 9  | AUX     | Output | For user to wakes up the external MCU and it outputs low level during |
|    |         |        | power-on self-check initialization; (can be left floating)            |
| 10 | VCC     | -      | Module power positive reference, voltage range: 2.6~5.5V DC           |
| 11 | GND     | -      | Module ground                                                         |
| 12 | RST     | -      | Module Reset pin                                                      |
| 13 | GND     | -      | Module ground                                                         |
| 14 | SWDIO   | -      | -                                                                     |
| 15 | VDD     | -      | 3.3V                                                                  |
| 16 | RS485   | -      | RS485 enable                                                          |
| 17 | PA-RXEN | -      | NC                                                                    |
| 18 | PA-TXEN | -      | NC                                                                    |
| 19 | GND     | -      | Module ground                                                         |
| 20 | GND     | -      | Module ground                                                         |
| 21 | ANT     | -      | Antenna                                                               |
| 22 | GND     | -      | Module ground                                                         |

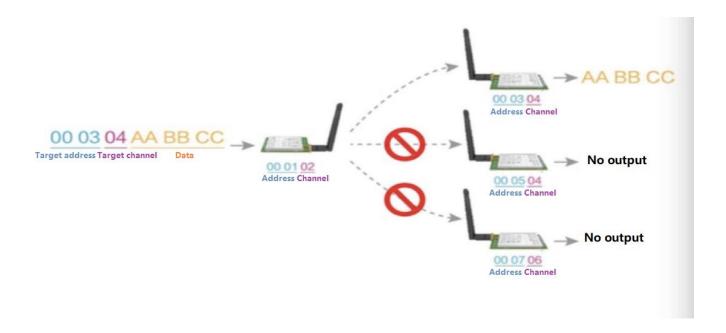

#### Dimension and Pin definition 3.2 E29-400T22D



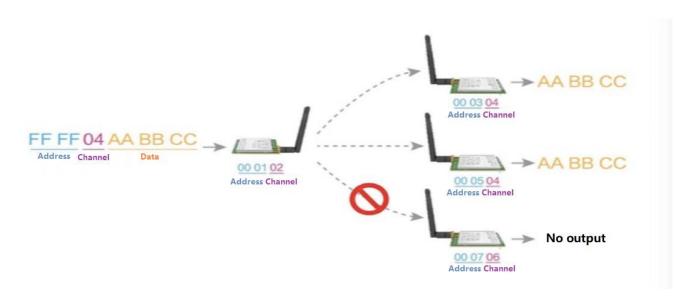


| Pin No. | Pin Name   | Pin Direction | Pin Function                                                          |  |  |
|---------|------------|---------------|-----------------------------------------------------------------------|--|--|
| 1 100   | MO         | Input         | Work with M1 to decide 4 working modes of module (not float, if not   |  |  |
| 1       | M0         | (pull-up)     | used, could be grounded).                                             |  |  |
| 2       | M1         | Input         | Work with M0 to decide 4 working modes of module (not float, if not   |  |  |
| 2       | M1         | (pull-up)     | used, could be grounded).                                             |  |  |
| 3       | RXD        | Input         | TTL UART inputs, connects to external TXD output pin.                 |  |  |
| 4       | TXD        | Output        | TTL UART outputs, connects to external RXD input pin.                 |  |  |
|         |            |               | Used to indicate the working status of the module;                    |  |  |
| 5       | AUX        | Output        | For user to wakes up the external MCU and it outputs low level during |  |  |
|         |            |               | power-on self-check initialization; (can be left floating))           |  |  |
| 6       | VCC        | Power supply  | Module power positive reference, voltage range: 2.6~5.5V DC           |  |  |
| 7       | GND        | Power supply  | Module ground                                                         |  |  |
| 8       | Fixed hole |               | Fixed hole (connect with module GND)                                  |  |  |
| 9       | Fixed hole |               | Fixed hole (connect with module GND)                                  |  |  |
| 10      | Fixed hole |               | Fixed hole (connect with module GND)                                  |  |  |

## **Chapter 4** Recommended Connection Diagram




| No. | Brief instructions for the connection between module and MCU (Take STM8L as an example)                                 |
|-----|-------------------------------------------------------------------------------------------------------------------------|
| 1   | The wireless serial port module is TTL level, please connect with TTL level MCU                                         |
| 2   | For some 5V microcontrollers, it may be necessary to add 4-10K pull-up resistors to the TXD and AUX pins of the module. |




## **Chapter 5 Function Description**

### 5.1 Fixed Transmission



## 5.2 Broadcasting Transmission





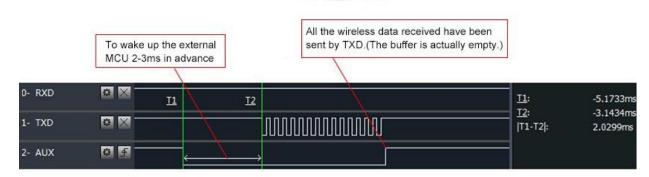
### 5.3 Broadcasting Address

- For Example: Set the address of module A to 0xFFFF and the channel to 0x04.
- When module A is used as a transmitter (same mode, transparent transmission mode), all receiving modules under the 0x04 channel can receive data to achieve the purpose of broadcasting.

### 5.4 Listening Address

- For example: Set the address of module A as 0xFFFF, and the channel as 0x04;
- When module A is the receiver, it can receive the data sent from all modules under channel 0x04, the purpose of listening is realized.

### 5.5 Module Reset


- After the module is powered on, AUX will immediately output low level, perform hardware self-check, and set the working mode according to user parameters;
- During this process, AUX keeps low level, and AUX outputs high level after completion, and starts to work normally according to the working mode formed by M1 and M0; Therefore, the user needs to wait for the rising edge of AUX as the starting point for the module to work normally.

### 5.6 AUX Description

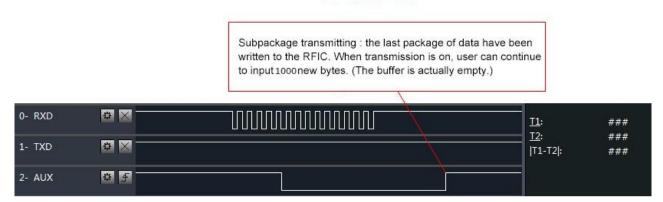
- AUX Pin can be used as indication for wireless TX &RX buffer and self-check.
- It can indicate whether there is data not transmitted via wireless way, or whether the received data has not been sent through UART, or whether the module is still in the process of self-check initialization.

### 5.6.1 Indication of UART Output

• To wake up external MCU;



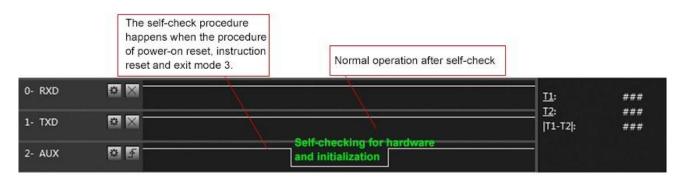
Timing Sequence Diagram of AUX when TXD pin transmits




#### 5.6.2 **Indication of Wireless Transmitting**

Buffer empty: the data in the 700byte buffer in the module is written to the wireless chip (automatically sub-packaging);

When AUX=1, if user continuously sends data less than 700 bytes, it won't overflow;


When AUX=0, the buffer is not empty: It means data in the module's internal 700byte buffer has not been written to the wireless chip and has not been transmitted. At this time, the module may be waiting for the end of user inputing data (subject to timeout), or the module is going on with wireless sub-packet transmission. (下图中的 1000 需改为 700)



Timing Sequence Diagram of AUX when RXD pin receives

### 5.6.3 The module is being configured

Only happened when resetting or exiting sleep mode



Timing Sequence Diagram of AUX when self-check

### 5.6.4 Notes for AUX

| No. | Notes for AUX |
|-----|---------------|
| No. |               |



| 1 | For function 1 (5.6.1) & function 2 ( (5.6.2) mentioned above, the priority should be given to the one with low level output, which means as long as any output low level condition is met, AUX will output low level; Only when none of the output low level condition is met, AUX will outputs high level.                                                                                                      |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | When AUX outputs low level, it means the module is busy & it won't conduct working mode checking.  Within 1ms since AUX outputs high level, the module working mode switch will be completed.                                                                                                                                                                                                                     |
| 3 | After switching to new working mode, module will not work in the new mode immediately until AUX rising edge lasts for 2ms.  If AUX is always at high level, then the mode switch will take effect immediately;                                                                                                                                                                                                    |
| 4 | When the user switches to other working modes from mode 3 (sleep mode) or it is still in reset process, the module will reset user parameters, during which AUX outputs low level.                                                                                                                                                                                                                                |
| 5 | Due to the characteristics of the ChirpIoT <sup>TM</sup> modulation method, the information transmission delay is much longer than FSK. For example, at an air data rate of 1.2kbps, the transmission delay of 100 bytes is about 1.5 seconds.  To avoid communication abnormalities caused by data accumulation and data loss, customer is suggested not to transmit large amounts of data at low air data rate. |

# **Chapter 6 Working Mode**

There are four working modes, which are set by M1 and M0, the details are as follows:

| Mode (0-3)              | M1 | M0 | Description                                                                                        | Remark                                                 |  |
|-------------------------|----|----|----------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|
| 0 Transmission<br>Mode  | 0  | 0  | UART and wireless channel are open, transparent transmission is on                                 | Support over-the-air configuration via special command |  |
| 1 WOR Mode              | 0  | 1  | Can be set as WOR Transmitter or WOR Receiver                                                      | Support wake up over the air                           |  |
| 2 Configuration<br>Mode | 1  | 0  | Users can access the registers through the serial port to control the working status of the module |                                                        |  |
| 3 Deep Sleep<br>Mode    | 1  | 1  | Module goes to sleep                                                                               |                                                        |  |

## 6.1 Notes for Mode Switching

| No. | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | <ul> <li>Users can combine high and low levels with M1 and M0 to determine the module's working mode. Two GPIOs of the MCU can be used to control mode switching;</li> <li>After changing M1 and M0: If the module is idle, after 1ms, it can start working according to the new mode;</li> <li>If there is serial port data of the module not been transmitted through the wireless, the new working mode can be switched after the transmission is completed;</li> <li>If the module receives the wireless data and transmits the data through the serial port, it needs to finish transmission before switching to the new working mode;</li> <li>Therefore, mode switching can only be valid when AUX output is 1, otherwise it will delay switching</li> </ul> |
| 2   | <ul> <li>For example, users continuously inputs a large amount of data and simultaneously performs mode switching. At this time, the switching mode operation is invalid; the module will process all the user data before performing the new mode detection;</li> <li>Therefore, the general recommendation is to detect the output state of the AUX pin and switch mode after 2ms when AUX outputs high level.</li> </ul>                                                                                                                                                                                                                                                                                                                                         |



| 3 | <ul> <li>When the module is switched to sleep mode from other modes, if there is data not been processed yet, the module will process these data (including receiving and sending) before entering sleep mode. This feature can be used for fast sleep to save power;</li> <li>For example, the transmitter module works in mode 0, the user transmits the serial port data "12345". At the time, user does need to wait for the AUX pin to be idle (high level), user can directly switch the module to sleep mode and make user's main MCU immediately sleep, then the module will automatically transmit the user data through the wireless, and will enters sleep mode within 1ms automatically; This will saves MCU's working time and reduces its power consumption.</li> </ul> |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | <ul> <li>Similarly, any mode switching can use this feature. After the module processes the event in the current mode, it will automatically enter the new mode within 1ms; This saves the user's work of querying AUX and it achieves the purpose of fast switching;</li> <li>For example, switching from the transmit mode to the receive mode; the user MCU can also enter sleep before the mode switch, and use the external interrupt function to acquire the AUX change, thereby performing mode switching.</li> </ul>                                                                                                                                                                                                                                                          |
| 5 | This operation mode is very flexible and efficient. It is designed according to the user's MCU's operation convenience, and it can reduce the workload of the entire system as much as possible, improving system efficiency, and reducing power consumption as well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

#### Normal mode (Mode 0) 6.2

| Туре         | When $M0 = 0$ , $M1 = 0$ , module works in Mode 0                                                                                              |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Transmitting | Users can input data through the serial port and the module will start wireless transmission.                                                  |  |
| Receiving    | The module wireless receiving function is turned on, and after receiving the wireless data, it will be output through the serial port TXD pin. |  |

#### 6.3 WOR mode (Mode 1)

| Туре         | When $M0 = 1$ , $M1 = 0$ , module works in Mode 1                                                                              |
|--------------|--------------------------------------------------------------------------------------------------------------------------------|
| Transmitting | When defined as the transmitter, the wake-up code for a certain period of time will be automatically added before transmitting |
| Receiving    | Data can be received normally, and the receiving function is equivalent to that in mode 0                                      |

## 6.4 Configuration mode (Mode 2)

| Туре         | When $M0 = 0$ , $M1 = 1$ , module works in Mode 2                           |
|--------------|-----------------------------------------------------------------------------|
| Transmitting | Wireless transmitting off, Automatically open during wireless configuration |



| Receiving     | Wireless receiving off, Automatically open during wireless configuration |
|---------------|--------------------------------------------------------------------------|
| Configuration | User can access registers to configure module operating status           |

#### Deep sleep mode (Mode 3) 6.5

| Туре         | When $M0 = 1$ , $M1 = 1$ , module works in Mode 3                                                                                                                                                                                                                      |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transmitting | Unable to transmit wireless data                                                                                                                                                                                                                                       |
| Receiving    | Unable to receive wireless data                                                                                                                                                                                                                                        |
| Note         | When entering other modes from sleep mode, the module will reconfigure parameters. During the configuration process, AUX stays in low level; After completion of comfiguration, AUX will output a high level, so user is recommended to detect the rising edge of AUX. |

# Chatper 7 Register read and write control

### 7.1 Command format

In configuration mode (mode 2: M0 = 0, M1 = 1), the list of supported commands are as follows (only 9600, 8N1 format is supported when setting):

| No. | Command format | Description                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|-----|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1   | Set register   | Command: C0+starting address+length+parameters Response: C1+starting address+length+parameters  E.g 1: Configure Channel to be 0x09                                                                                                                                                                                                                |  |  |  |  |
| 2   | Read register  | Return: C1 00 04 12 34 00 60  Command: C1+starting address+ length Response: C1+starting address+length+parameters  E.g 1: Read channel     command starting address length parameter Send: C1 05 01 Returen: C1 05 01 09  E.g 2: Read module address, network address, serial port and air data rate. Send: C1 00 04 Return: C1 00 04 12 34 00 60 |  |  |  |  |
| 3   | Set temporary  | Command: C2+starting address+length+parameters                                                                                                                                                                                                                                                                                                     |  |  |  |  |



|   | registers                 | Response: C1+starting address+length+parameters                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|---|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|   |                           | E.g 1: Configure Channel to be 0x09 command starting address length parameter Send: C2 05 01 09 Return: C1 05 01 09  E.g 2: Configure module address (0x1234), network address (0x00), serial port (9600 8N1) and air data rate (2.4K). Send: C2 00 04 12 34 00 60                                                                                                                                                                                                                         |  |  |  |  |  |
|   |                           | Return: C1 00 04 12 34 00 60                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| 4 | Wireless<br>configuration | Return: C1 00 04 12 34 00 60  Command: CF CF + normal command Respond: CF CF + normal respond  E.g 1: Configure Channel to be 0x09 by wireless configuration Command head command starting address length parameter Send: CF CF C0 05 01 09  Returen: CF CF C1 05 01 09  E.g 2: Configure module address (0x1234), network address (0x00), serial port (9600 8N1) and air data rate (2.4K) by wireless configuration. Send: CF CF C0 00 04 12 34 00 60  Return: CF CF C1 00 04 12 34 00 60 |  |  |  |  |  |
| 5 | Wrong format              | Wrong format respond: FF FF FF / "=ERR"                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |

# 7.2 Register description

| No. | Read<br>or<br>write | Name                                                                                                                       |                                      |                                                                                               |         | Description                  | Remark                                                                                                                                                     |
|-----|---------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------|---------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00Н | Read/<br>Write      | ADDH                                                                                                                       | AI                                   | DDH (                                                                                         | default | 0)                           | High byte and low byte in the module address; Note: When the module address is FFFF, it can be                                                             |
| 01H | Read/<br>Write      | ADDL                                                                                                                       | AI                                   | ODL (                                                                                         | default | 0)                           | used as the broadcast and listening address, that is: the module will not perform address filtering.                                                       |
| 02Н | Read/<br>Write      | NETID                                                                                                                      | NI                                   | NETID (default 0)                                                                             |         |                              | Network address, used to distinguish the network.  When two or more modules need to communicate with each other, their network address should be the same. |
|     |                     | Read/ Write  REG0  0 0 0 Serial 0 0 1 Serial 0 1 0 Serial 0 1 1 Serial 0 1 0 Serial 1 0 0 Serial 1 0 1 Serial 1 0 1 Serial | 7                                    | 6                                                                                             | 5       | UART Serial port rate (bps)  |                                                                                                                                                            |
|     |                     |                                                                                                                            | 0                                    | 0                                                                                             | 0       | Serial port baud rate 1200   | For the two modules communicating with each other, their serial port baud rate can be different,                                                           |
|     |                     |                                                                                                                            | 0                                    | 0                                                                                             | 1       | Serial port baud rate 2400   | and their serial parity bit can also be different.                                                                                                         |
|     |                     |                                                                                                                            | 0                                    | 1                                                                                             | 0       | Serial port baud rate 4800   | When transmitting large packets continuously,                                                                                                              |
| 03Н | Read/               |                                                                                                                            | Serial port baud rate 9600 (default) | users need to consider the data blocking and possible data loss caused by the same baud rate. |         |                              |                                                                                                                                                            |
|     | write               |                                                                                                                            | 1                                    | 0                                                                                             | 0       | Serial port baud rate 19200  | It is generally recommended that both                                                                                                                      |
|     |                     |                                                                                                                            | 1                                    | 0                                                                                             | 1       | Serial port baud rate 38400  | communication parties have the same baud rate.                                                                                                             |
|     |                     |                                                                                                                            | 1                                    | 1                                                                                             | 0       | Serial port baud rate 57600  |                                                                                                                                                            |
|     |                     |                                                                                                                            | 1                                    | 1                                                                                             | 1       | Serial port baud rate 115200 |                                                                                                                                                            |
|     |                     |                                                                                                                            | 4                                    | 3                                                                                             | Serial  | parity bit                   | The communication parties can have different                                                                                                               |



|      | 7 [            |      | 0   | 0                        | 8N1 (            | (default)                    | serial parity bit.                                                                                                                                               |                              |  |
|------|----------------|------|-----|--------------------------|------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|
|      |                | ļ    | 0   |                          |                  |                              |                                                                                                                                                                  |                              |  |
|      |                |      | 1   | 0                        | 8E1              |                              |                                                                                                                                                                  |                              |  |
|      |                |      | 1   | 1                        |                  | (equal to 00)                |                                                                                                                                                                  |                              |  |
|      |                |      | 2   | 1                        | 0                | Wireless air data rate (bps) |                                                                                                                                                                  |                              |  |
|      |                |      |     |                          | 0                | 0                            | 0                                                                                                                                                                | Air data rate 2.4k (default) |  |
|      |                |      | 0   | 0                        | 1                | Air data rate 2.4K           | The communication parties must have the same air data rate.                                                                                                      |                              |  |
|      |                |      | 0   | 1                        | 0                | Air data rate 2.4K           |                                                                                                                                                                  |                              |  |
|      |                |      | 0   | 1                        | 1                | Air data rate 4.6k           | The higher the air data rate is, the smaller the delay in response, and the shorter the transmission                                                             |                              |  |
|      |                |      | 1   | 0                        | 0                | Air data rate 8.2k           | distance is.                                                                                                                                                     |                              |  |
|      |                |      | 1   | 0                        | 1                | Air data rate 4.8k           | $0\sim4: BW = 250K$                                                                                                                                              |                              |  |
|      |                |      | 1   | 1                        | 0                | Air data rate 16.4k          | $5 \sim 7: BW = 500K$                                                                                                                                            |                              |  |
|      |                |      | 1   | 1                        | 1                | Air data rate 16.4k          |                                                                                                                                                                  |                              |  |
|      |                |      | 7   | 6                        | Sub pa           | acket setting                | *** 4 1 1 1 1 1 1 1 1                                                                                                                                            |                              |  |
|      |                |      | 0   | 0                        | 240 by           | ytes (default)               | When the data sent is smaller than the sub packet length, the serial output of the receiving end is an                                                           |                              |  |
|      |                |      | 0   | 1 128 bytes              |                  | ytes                         | uninterrupted continuous output.                                                                                                                                 |                              |  |
|      |                |      | 1   | 0 64 bytes               |                  | es                           | When the data sent is larger than the sub packet                                                                                                                 |                              |  |
|      |                | REG1 | 1   | 1 32 bytes               |                  |                              | length, the serial port in receiving end will sub packet the data and then output them.                                                                          |                              |  |
|      |                |      | 5 1 | RF Power Mode            |                  | de                           | Users can change the RF power mode through AT                                                                                                                    |                              |  |
|      |                |      | 0 1 | DCDC                     | mode             | (default)                    | commands: 1. DCDC mode reduces power consumption by                                                                                                              |                              |  |
| 04H  | Read/<br>Write |      | 1 1 | LDO mode                 |                  |                              | sacrificing sensitivity;  2. LDO mode improves sensitivity by sacrificing power consumption;  3. It is recommended to use DCDC mode for battery-powered devices. |                              |  |
|      |                |      | 4   | 3                        | 2                | Reserve                      |                                                                                                                                                                  |                              |  |
|      |                |      |     |                          |                  |                              |                                                                                                                                                                  |                              |  |
|      |                |      | 1   | 0                        | Trans            | mitting power                | Power and current are nonlinear, and power                                                                                                                       |                              |  |
|      |                |      | 0   | 0 0 22dBm (default)      |                  | m (default)                  | efficiency is highest at maximum power.                                                                                                                          |                              |  |
|      |                |      | 0   | 1                        | 20dBı            | n                            | The current does not decrease in proportion to the                                                                                                               |                              |  |
|      |                |      | 1   | 0                        | 17dBm            |                              | decrease in power.                                                                                                                                               |                              |  |
|      |                |      | 1   |                          |                  |                              | -                                                                                                                                                                |                              |  |
| 05H  | Read/<br>Write | REG2 |     |                          | control esents a | (CH) total of 84 channels    | Actual Frequency= 410.125 + CH *1M                                                                                                                               |                              |  |
|      |                |      | 7 1 | Enable                   | e RSSI           |                              | After enabled, when the module receives the                                                                                                                      |                              |  |
|      |                | REG3 |     |                          |                  |                              | wireless data, it will follow an RSSI strength byte                                                                                                              |                              |  |
|      |                |      | 1 1 |                          |                  |                              | after output via the serial port TXD                                                                                                                             |                              |  |
|      |                |      |     | 6 Transmission mode      |                  |                              | In Fixed point transmission mode, the module                                                                                                                     |                              |  |
| 06H  | Read/          |      | 0   |                          |                  |                              | recognizes the first three bytes of the serial data as: address high + address low + channel and takes                                                           |                              |  |
| 0011 | Write          | ALOJ | 1 I | Fixed                    | point tra        | ansmission mode              | it as the wireless transmitting target.                                                                                                                          |                              |  |
|      |                |      | 5 1 | Repea                    | ter func         | tion                         | After the repeater function is enabled, if the target                                                                                                            |                              |  |
|      |                |      |     |                          |                  |                              | address is not the module itself, the module will forward it once.                                                                                               |                              |  |
|      |                |      | 1 1 | Enable repeater function |                  |                              | In order to prevent data return-back, it is                                                                                                                      |                              |  |
|      |                |      |     |                          |                  |                              | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                          |                              |  |



|     |       |         |   |                                                                                                                                                    |                                                                                                                                                        |                                                                | recommended to use it in conjunction with the fixed-point transmission mode. That is: the target address is different from the source address.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----|-------|---------|---|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |       |         | 4 | Reser                                                                                                                                              | ve                                                                                                                                                     |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |       |         | 0 | Reser                                                                                                                                              | ve                                                                                                                                                     |                                                                | Reserve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |       |         | 1 | Reser                                                                                                                                              | ve                                                                                                                                                     |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |       |         | 3 | WOR                                                                                                                                                | WOR transceiver control                                                                                                                                |                                                                | Below operation is valid for Mode 1 only;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |       |         | 0 | WOR receiver (default) Working in WOR listening mode, the listening period is shown below (WOR period), which can save a lot of power consumption. |                                                                                                                                                        | WOR listening mode, the listening wn below (WOR period), which | <ol> <li>In WOR receiving mode (as WOR receiver), the delay time after wake-up can be modified. The default time is 0;</li> <li>To modify the delay time after wake-up, WOR receiver needs to send the command C0 09 02 E8</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |       |         | 1 | The functi                                                                                                                                         | WOR transmitter The module receiving and transmitting functions are turned on, and a wake-up code of a period of time is added when transmitting data. |                                                                | 03 in the configuration mode (C0 is writing command, 09 is the starting address of the register, 02 is the length, 0x03E8 is the set delay, the maximum delay FFFF is 65535ms, if the delay is set to 0, the wake-up delay is turn off.)  3. Data can be sent within the delay.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |       |         | 2 | 1                                                                                                                                                  | 0                                                                                                                                                      | WOR cycle time                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |       |         | 0 | 0                                                                                                                                                  | 0                                                                                                                                                      | 500ms                                                          | Below description is valid for Mode 1 only;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |       |         | 0 | 0                                                                                                                                                  | 1                                                                                                                                                      | 1000ms                                                         | Cycle time $T = (1 + WOR) * 500ms$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |       |         | 0 | 1                                                                                                                                                  | 0                                                                                                                                                      | 1500ms                                                         | max.4000ms, min.500ms;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |       |         | 0 | 1                                                                                                                                                  | 1                                                                                                                                                      | 2000ms                                                         | The longer the cycle time T (WOR listening                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |       |         | 1 | 0                                                                                                                                                  | 0                                                                                                                                                      | 2500ms                                                         | interval period), the lower the average power consumption, but the greater the data delay.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |       |         | 1 | 0                                                                                                                                                  | 1                                                                                                                                                      | 3000ms                                                         | Both the transmitter and the receiver must be set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     |       |         | 1 | 1                                                                                                                                                  | 0                                                                                                                                                      | 3500ms                                                         | as the same cycle time T (very important).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |       |         | 1 | 1                                                                                                                                                  | 1                                                                                                                                                      | 4000ms                                                         | NV in the second |
| 07H | Write | CRYPT_H | Н | igh byte                                                                                                                                           | gh byte of Key(default 0)                                                                                                                              |                                                                | Write only, read returns 0  Used for user encryption to avoid interception of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 08H | Write | CRYPT_L | L | ow byte                                                                                                                                            | w byte of Key(default 0)                                                                                                                               |                                                                | wireless data over the air by similar modules.  The module will internally use these two bytes as a calculation factor to do a transform encryption processing for the wireless signal over the air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

# 7.3 Factory default parameter

| Item        | Factory default parameter: C0 00 09 00 00 00 60 00 17 03 00 00 |         |         |               |           |               |       |  |
|-------------|----------------------------------------------------------------|---------|---------|---------------|-----------|---------------|-------|--|
| Model No    | Frequency                                                      | Address | Channel | Air data rate | Baud rate | Parity format | Power |  |
| E29-400T22S | 433.125MHz                                                     | 0x0000  | 0x17    | 2.4kbps       | 9600      | 8N1           | 22dbm |  |
| E29-400T22D | 433.125MHz                                                     | 0x0000  | 0x17    | 2.4kbps       | 9600      | 8N1           | 22dbm |  |



## Chatper 8 AT Command

- AT commands are used in configuration mode, there are three kinds of AT commands: command commands, setting commands and query commands;
- The user can query the AT command set supported by the module through "AT+HELP=?", and the baud rate adopted by the AT command is 9600 8N0;
- When the input parameter exceeds the range, it will be restricted. Please do not let the parameter exceed the range, otherwise there will come unknown issues.

#### AT command table 8.1

| Command commands                  | Description              | Example    | Example description      |  |
|-----------------------------------|--------------------------|------------|--------------------------|--|
| AT+IAP (Use with caution,         |                          |            |                          |  |
| please refer to <u>8.3 IAP</u>    | Enter IAP upgrade mode   | AT+IAP     | Enter IAP upgrade mode   |  |
| <u>Upgrade Notes</u> for details) |                          |            |                          |  |
| AT+RESET                          | Device restart           | AT+RESET   | Device restart           |  |
| AT+DEFAULT                        | restore default settings | AT+DEFAULT | restore default settings |  |

| Setting commands    | Description                  | Example       | Example description        |  |  |
|---------------------|------------------------------|---------------|----------------------------|--|--|
| AT+UART=baud,parity | Set baud rate and parity     | AT+UART=3,0   | Set baud rate 9600, 8N0    |  |  |
| AT+RATE=rate        | Set air data rate            | AT+RATE=7     | Set air data rate 16.4K    |  |  |
| AT+PACKET=packet    | Set packet length            | AT+PACKET=0   | Set packet length 240bytes |  |  |
| AT+WOR=role,period  | Set WOR role and cycle       | AT+WOR=0,3    | Set as WOR receiver,       |  |  |
|                     |                              |               | cycle 2000ms               |  |  |
| AT+POWER=power      | Set TX power                 | AT+POWER=0    | Set TX power: 22dBm        |  |  |
| AT+TRANS=mode       | Set transmission mode        | AT+TRANS=1    | Set as fixed transmission  |  |  |
|                     |                              |               | mode                       |  |  |
| AT+ROUTER=router    | Set repeater mode            | AT+ROUTER=1   | Set as repeater mode       |  |  |
| AT+DRSSI=data_rssi  | Turn on the RSSI output      | AT+DRSSI=1    | Receive data RSSI          |  |  |
|                     |                              |               | function open              |  |  |
| AT+LDO=ldo          | AT+LDO=ldo RF LDO Power Mode |               | Set RF LDO mode            |  |  |
|                     | Switch                       |               |                            |  |  |
| AT+ADDR=addr        | Set module address           | AT+ADDR=1234  | Set module address: 1234   |  |  |
| AT+CHANNEL=channel  | Set module working           | AT+CHANNEL=23 | Set working frequency:     |  |  |
|                     | channel                      |               | 433.125M                   |  |  |
| AT+NETID=netid      | Set network ID               | AT+NETID=2    | Set network ID: 2          |  |  |
| AT+KEY=key          | Set module key               | AT+KEY=1234   | Set module key: 1234       |  |  |
| AT   DEL AV = delev | Sat WOD dalay slaan time     | AT+DELAY=1000 | Set WOR delay sleep        |  |  |
| AT+DELAY=delay      | Set WOR delay sleep time     | AITDELAI-1000 | time: 1000ms               |  |  |

| Query commands | Description          | Example | Example description   |
|----------------|----------------------|---------|-----------------------|
| AT+HELP=?      | Query the AT command |         | Return the AT command |



|              | table                              |                       | table                                     |
|--------------|------------------------------------|-----------------------|-------------------------------------------|
| AT+DEVTYPE=? | Query module model                 | DEVTYPE=E29-400T22S/D | Return module model                       |
| AT+FWCODE=?  | Query firmware code                | FWCODE=7432-0-10      | Return firmware code                      |
| AT+UART=?    | Query baud rate and parity         | AT+UART=3,0           | Return baud rate and parity: 9600, 8N0    |
| AT+RATE=?    | Query air data rate                | AT+RATE=7             | Return air data rate 16.4K                |
| AT+PACKET=?  | Query packet length                | AT+PACKET=0           | Return packet length 240bytes             |
| AT+WOR=?     | Query WOR roles and cycle          | AT+WOR=0,3            | Return WOR receiver, cycle 2000ms         |
| AT+POWER=?   | Query TX power                     | AT+POWER=0            | Return TX power 22dBm                     |
| AT+TRANS=?   | AT+TRANS=? Query transmission mode |                       | Return fixed transmission mode            |
| AT+ROUTER=?  | Query repeater mode                | AT+ROUTER=1           | Return repeater mode                      |
| AT+DRSSI=?   | Query RSSI output                  | AT+DRSSI=1            | Return channel RSSI function is turned on |
| AT+LDO=?     | Query RF Power Mode                | AT+LDO=0              | Return DCDC RF Power<br>Mode              |
| AT+ADDR=?    | Query module address               | AT+ADDR=1234          | Return module address 1234                |
| AT+CHANNEL=? | Query module working channel       | AT+CHANNEL=23         | Return working frequency 433.125M         |
| AT+NETID=?   | Query network ID                   | AT+NETID=2            | Return network ID 2                       |
| AT+KEY=?     | Query module key                   | AT+KEY=0 (unreadable) | Return module key 0                       |
| AT+DELAY=?   | Query WOR delay sleep time         | AT+DELAY=1000         | Return WOR delay sleep time 1000ms        |

#### 8.2 AT parameter analysis

When the serial port receives a correct command, the serial port will return "command=OK", otherwise it will return "=ERR"

| Command parameter            | Parameter meaning                   |
|------------------------------|-------------------------------------|
| Doud (carial most hand sate) | 0:1200 1:2400 2:4800 3:9600         |
| Baud (serial port baud rate) | 4:19200 5:38400 6:57600 7:115200    |
| Parity (serial port parity)  | 0:8N1 1:8O1 2:8E1 3:8N1             |
| Rate (air data rate)         | 0:2.4K 1:2.4K 2:2.4K 3:4.6K         |
| Rate (air data rate)         | 4:8.2K 5:4.8K 6:16.4K 7:16.4K       |
| Packet (packet length)       | 0:240 1:128 2:64 3:32               |
| Role (WOR role)              | 0: receiver 1: transmitter          |
| Davied (WOD avala)           | 0:500ms 1:1000ms 2:1500ms 3:2000ms  |
| Period (WOR cycle)           | 4:2500ms 5:3000ms 6:3500ms 7:4000ms |
| Power (TX power)             | 0:22dBm 1:20dBm 2:17dBm 3:14dBm     |
| Mode (transmission mode)     | 0: transparent 1: fixed             |



| Router (repeater mode)       | 0: close 1: open                   |
|------------------------------|------------------------------------|
| Data_rssi (data RSSI)        | 0: close 1: open                   |
| Ldo (LDO mode switch)        | 0:DCDC 1:LDO                       |
| Addr (module address)        | Module address 0~65535 (Decimal)   |
| Channel (module channel)     | Module channel 0~83 (Decimal)      |
| Netid (network ID)           | Module network 0~255 (Decimal)     |
| Key (key)                    | Module key 0~65535 (Decimal)       |
| Delay (WOR delay sleep time) | delay sleep time 0~65535 (Decimal) |

#### IAP upgrade Notes 8.3

If the customer needs to upgrade the firmware, please find the corresponding BIN file provided by the official, and then use the official host control software to upgrade the firmware. Generally, the user does not need to upgrade the firmware. Please do not use the "AT+IAP" command.

The pins necessary for the upgrade must be led out (M1, M0, AUX, TXD, RXD, VCC, GND), and then send the "AT+IAP" command in the configuration mode to enter the upgrade mode. If you need to exit the IAP upgrade mode, you need to keep Power on and wait for 60 seconds, the program will automatically exit, otherwise it will enter the upgrade mode infinitely even if it is restarted.

After entering the upgrade mode, the baud rate will automatically switch to 115200 until it exits automatically, during which there will be log output.

## Chatper 9 Repeater networking mode

| No. | Repeater mode description                                                                                                                                                                                                                                                                                        |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | User need to set the repeater function in configuration mode. After setting, switch module to the normal mode. Then the repeater starts working.                                                                                                                                                                 |
| 2   | In the repeater mode, ADDH/ADDL is no longer used as the module address, it is used as a NETID to pair and forwarding. If the repeater receive the data from a network, then it will forward the data to the other network.  The network ID of the repeater itself is invalid in this case. (See below examples) |
| 3   | The repeater module cannot transmit and receive data, and cannot perform low-power operation.                                                                                                                                                                                                                    |
| 4   | When module enters the other modes from mode 3 (sleep mode) or during the reset process, it will reset the user parameters. During this period, AUX outputs low level.                                                                                                                                           |

#### Repeater networking rules:

- 1. Forwarding rules: the repeater can forward data in both directions between two NETIDs.
- 2. In repeater mode, ADDH\ADDL is no longer used as the module address. It is used as a NETID to pair and forwarding.

As shown in the figure:

1 Primary repeater

"Node 1" NETID is 08.

"Node 2" NETID is 33.

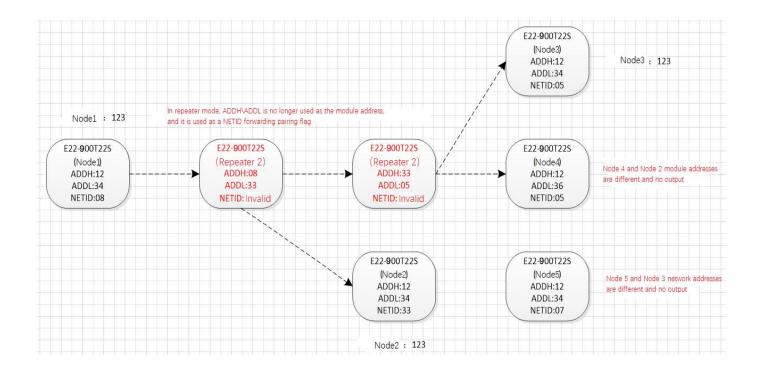


ADDH\ADDL of Repeater 1 are 08, 33 respectively.

So the data sent by node 1 (08) can be forwarded to node 2 (33)

Meanwhile, node 1 and node 2 have the same address, so the data transmitted by node 1 can be received by node 2.

#### 2 Secondary repeater


ADDH\ADDL of Repeater 2 are 33, 05 respectively.

Therefore, Repeater 2 can forward the data of Repeater 1 to the network NETID: 05.

Thus node 3 and node 4 can receive the data from node . Node 4 outputs data normally, but no ourput from Node3 because Node 3 has a different address from Node 1.

#### 3 Two-way repeater

As shown in below: The data sent by Node 1 can be received by Node 2 and Node 4; The data sent by Node 2 and Node 4 can also be received by Node 1.



## Chapter 10 Configuration instructions on computer

● The following figure is the display interface of E29-400T22S configuration on computer. User can switch to the command mode through M0, M1, and quickly configure and read the parameters on computer. (配置软件要英文界面)





 In the configuration on computer, the module address, Channel, network ID, and key are all in decimal. The range of values of each parameter is:

Network address: 0~65535

Channel:  $0\sim83$ 

Network ID:  $0\sim255$ 

Key:  $0\sim65535$ 

- When user configures the repeater mode using the host computer, one point much be paid attention to: In the configuration software, each parameter is in decimal, so the module address and network ID need to be converted when set it.
- For example, in the configure software, if the network ID of Transmitter A is input 02, and the network ID of Receiver B is input 10, then the module address of Repeater R should be set as 522. (The address of Repeater R is 0X020A in hex, and it need to be converted to decimal.)

## Chapter 11 Hardware design

- It is recommended to use a DC stabilized power supply. The power supply ripple factor is as small as possible, and the module needs to be reliably grounded.;
- Please pay attention to the correct connection of the positive and negative poles of the power supply. Reverse
  connection may cause permanent damage to the module;
- Please check the power supply to ensure it is within the recommended voltage, otherwise, the module will be permanently damaged when it exceeds the maximum voltage;
- Please check the stability of the power supply, the voltage can not be fluctuated frequently;
- When designing the power supply circuit for the module, it is often recommended to reserve more than 30% of the margin, which is beneficial for long-term stable operation of the whole machine;
- The module should be as far away as possible from the power supply, transformers, high-frequency wiring and



other parts with large electromagnetic interference.;

- High-frequency digital routing, high-frequency analog routing, and power routing must be avoided under the module. If it is necessary to pass through the module, assume that the module is soldered to the Top Layer, and the copper is spread on the Top Layer of the module contact part(well grounded), it must be close to the digital part of the module and routed in the Bottom Layer;
- Assuming the module is soldered or placed over the Top Layer, it is wrong to randomly route over the Bottom Layer or other layers, which will affect the module's spurs and receiving sensitivity to varying degrees;
- It is assumed that there are devices with large electromagnetic interference around the module that will greatly affect the performance. It is recommended to keep them away from the module according to the strength of the interference. If necessary, appropriate isolation and shielding can be done;
- Assume that there are traces with large electromagnetic interference (high-frequency digital, high-frequency analog, power traces) around the module that will greatly affect the performance of the module. It is recommended to stay away from the module according to the strength of the interference. If necessary, appropriate isolation and shielding can be done.
- If the communication line uses a 5V level, a 1k-5.1k resistor must be connected in series (5V communication level is not recommended, there is still a risk of damage);
- The mounting structure of antenna has a great influence on the performance of the module. It is necessary to ensure that the antenna is exposed, preferably vertically upward.
- When the module is mounted inside the case, user could use a good antenna extension cable to extend the antenna to the outside;
- The antenna must not be installed inside the metal case, which will decrease the transmission distance greatly.

## Chapter 12 FAQ

#### 12.1 Communication range is too short

- When there is a straight-line communication obstacle, the communication distance will be attenuated accordingly;
- Temperature, humidity, and co-channel interference will increase the communication packet loss rate;
- The ground will absorb and reflect wireless radio wave, so the performance will be poor when testing module near ground.
- Sea water has great ability in absorbing wireless radio wave, so performance will be poor when testing near the sea.
- The signal will be attenuated seriously when there is metal objects near the antenna or module is put in a metal case.
- Power register was set incorrectly, air data rate is set too high (the higher the air data rate, the shorter the transmission distance).
- The power supply voltage is lower than the recommended value under room temperature. (the lower the voltage, the lower the transmitting power.)
- Due to antenna quality or poor matching between antenna and module.

#### 12.2 Module is easy to be damaged

Please check the power supply, ensure it is in right range, voltage higher than max value will damage the module.

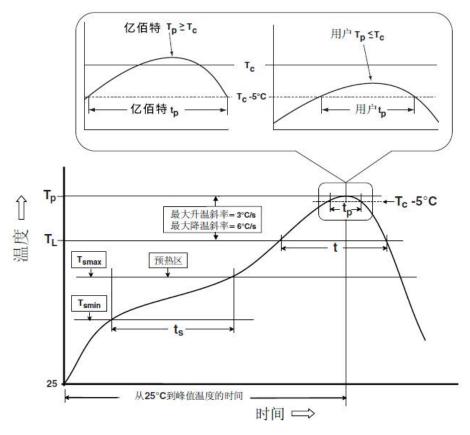


- Please check the stability of power supply, the voltage cannot fluctuate too much.
- Please ensure anti-static operation during installation and in use, high-frequency devices are sensitive to static electricity
- Please ensure that the humidity during installation and in use should not be too high, some components are sensitive to humidity.
- Please avoid using modules at too high or too low temperature if there is no special requirement.

## 12.3 BER(Bit Error Rate) is high

- There are co-channel signal interference nearby, please be away from interference sources or modify frequency and channel to avoid interference;
- Poor power supply may cause messy code. Make sure that the power supply is reliable.
- The extension line and feeder quality are poor or too long, so the bit error rate is high;




# **Chapter 13 Welding Work Instructions**

# 13.1 Reflow soldering temperature

| Reflow Soldering Profile Characteristics |                                             | Sn-Pb Assembly                          | Pb-Free Assembly             |  |
|------------------------------------------|---------------------------------------------|-----------------------------------------|------------------------------|--|
|                                          | Min. Temperature (Tsmin)                    | 100°C                                   | 150°C                        |  |
| Preheat/keep<br>warm                     | Max. Temperature (T <sub>smax</sub> ) 150°C |                                         | 200°C                        |  |
| wann                                     | Time (Tsmin~Tsmin)                          | 60-120s                                 | 60-120s                      |  |
| Average                                  | ramp-up rate $(T_L \sim T_p)$               | 3°C/s, Maximum                          | 3°C/s, Maximum               |  |
| Liquido                                  | us Temperature (T <sub>L</sub> )            | 183°C                                   | 217°C                        |  |
|                                          |                                             | 60~90s                                  | 60~90s                       |  |
| Time                                     | (tL) Maintained Above                       |                                         |                              |  |
|                                          |                                             | Should not exceed the                   | Should not exceed the        |  |
| D. I                                     |                                             | temperature indicated on the            | temperature indicated on the |  |
| Раскад                                   | e peak temperature T <sub>p</sub>           | product's label of "Moisture            | product's label of "Moisture |  |
|                                          |                                             | Sensitivity".                           | Sensitivity".                |  |
| The time (Tp                             | ) within 5°C of the specified               |                                         |                              |  |
| classificatio                            | on temperature (Tc), see the                | 20s                                     | 30s                          |  |
| figure below                             |                                             |                                         |                              |  |
| Aveage ra                                | mp-down rate (Tp~TL)                        | 6°C/s, Maximum                          | 6°C/s, Maximum               |  |
| Time from                                | 25℃ to peak temperature                     | 6min, Maximum                           | 8min, Maximum                |  |
| *The peak te                             | mperature (Tp) tolerance defir              | nition of the temperature profile is an | upper limit for the user     |  |



#### Reflow soldering curv 13.2



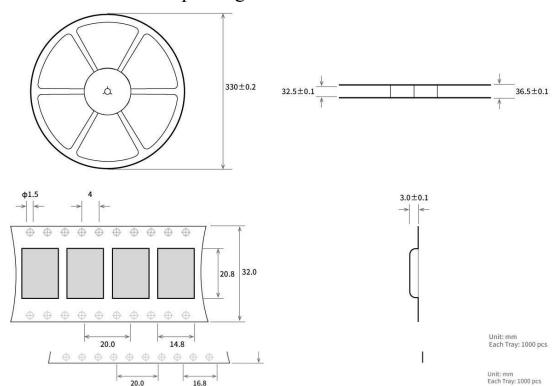
#### Retaled series Chatper 14

| Model No.   | Chip   | Frequency<br>Hz | Tx power | Tested Distance | Package | Size<br>mm | Communication Interface |
|-------------|--------|-----------------|----------|-----------------|---------|------------|-------------------------|
| E22-230T22S | SX1262 | 230M            | 22       | 5               | SMD     | 16*26      | TTL                     |
| E22-230T30S | SX1262 | 230M            | 30       | 10              | SMD     | 20*40.5    | TTL                     |
| E22-400T22S | SX1262 | 433/470M        | 22       | 5               | SMD     | 16*26      | TTL                     |
| E22-400T30S | SX1262 | 433/470M        | 30       | 10              | SMD     | 20*40.5    | TTL                     |
| E22-900T22S | SX1262 | 868/915M        | 22       | 5               | SMD     | 16*26      | TTL                     |
| E22-900T30S | SX1262 | 868/915M        | 30       | 10              | SMD     | 20*40.5    | TTL                     |
| E22-400M22S | SX1262 | 433/470M        | 22       | 7               | SMD     | 14*20      | SPI                     |
| E22-400M30S | SX1262 | 433/470M        | 30       | 12              | SMD     | 24*38.5    | SPI                     |
| E22-900M22S | SX1262 | 868/915M        | 22       | 7               | SMD     | 14*20      | SPI                     |
| E22-900M30S | SX1262 | 868/915M        | 30       | 12              | SMD     | 24*38.5    | SPI                     |

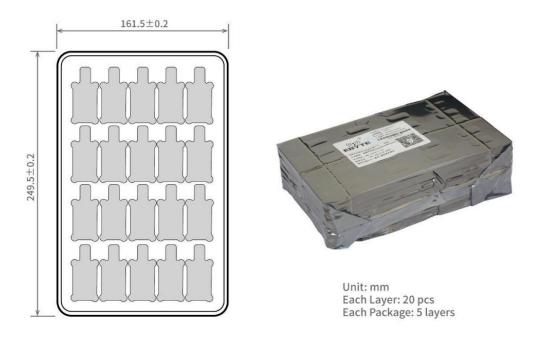


#### Antenna recommendation Chapter 15

#### 15.1 Antenna recommendation


The antenna is an important role in the communication process. A good antenna can largely improve the communication system. Therefore, we recommend some antennas for wireless modules with excellent performance and reasonable price.

| Model No.          | Туре              | Frequency<br>Hz | nterface | Gain<br>dBi | Height   | Cable length cm | Function & Feature                          |
|--------------------|-------------------|-----------------|----------|-------------|----------|-----------------|---------------------------------------------|
| TX433-NP-4310      | FPC antenna       | 433M            | 焊接       | 2.0         | 43.8*9.5 | -               | Embedded FPC antenna                        |
| TX433-JZ-5         | Rubber<br>antenna | 433M            | SMA-J    | 2.0         | 52       | -               | Short straight &omnidirectional             |
| TX433-JZG-6        | Rubber<br>antenna | 433M            | SMA-J    | 2.5         | 62       | -               | Short straight &omnidirectional             |
| TX433-JW-5         | Rubber<br>antenna | 433M            | SMA-J    | 2.0         | 50       | -               | Flexible &omnidirectional                   |
| <u>TX433-JWG-7</u> | Rubber<br>antenna | 433M            | SMA-J    | 2.5         | 75       | -               | Flexible &omnidirectional                   |
| TX433-JK-11        | Rubber<br>antenna | 433M            | SMA-J    | 2.5         | 110      | -               | Flexible &omnidirectional                   |
| TX433-JK-20        | Rubber<br>antenna | 433M            | SMA-J    | 3.0         | 210      | -               | Flexible &omnidirectional                   |
| TX433-XPL-100      | Sucker<br>antenna | 433M            | SMA-J    | 3.5         | 185      | 100             | Small sucker antenna, cost-effictive        |
| TX433-XP-200       | Sucker<br>antenna | 433M            | SMA-J    | 4.0         | 190      | 200             | Medium sucker antenna,low power comsumption |
| TX433-XPH-300      | Sucker<br>antenna | 433M            | SMA-J    | 6.0         | 965      | 300             | Large sucker antenna, high gain             |
| <u>TX490-JZ-5</u>  | Sucker<br>antenna | 470/490M        | SMA-J    | 2.0         | 50       | -               | Short straight &omnidirectional             |
| TX490-XPL-100      | Sucker<br>antenna | 470/490M        | SMA-J    | 3.5         | 120      | 100             | Small sucker antenna, cost-effictive        |




# **Chapter 16 Bulk Packing**

#### 15.1 E29-400T22S bulk packing



## 15.1 E29-400T22D bulk packing





## **Revision history**

| Version | Date       | Description           | Issued by |
|---------|------------|-----------------------|-----------|
| 1.0     | 2022-12-12 | Initial version       | Weng      |
| 1.1     | 2024-3-8   | Content Modifications | Lau       |

### About us

Technical support: <a href="mailto:support@cdebyte.com">support@cdebyte.com</a>

Documents and RF Setting download link: https://www.cdebyte.com

Thank you for using Ebyte products! Please contact us with any questions or suggestions: info@cdebyte.com

Official hotline:028-61399028

Web: https://www.cdebyte.com

Address: , Building B5, Mould Industrial Park, 199# Xiqu Ave, High-tech Zone, Chengdu, 611731, Sichuan, China



Chengdu Ebyte Electronic Technology Co.,Ltd.