

CC6403/4

5V/12V/24V 450mA Single Coil Fan Driver

with Auto-start and FG or RD

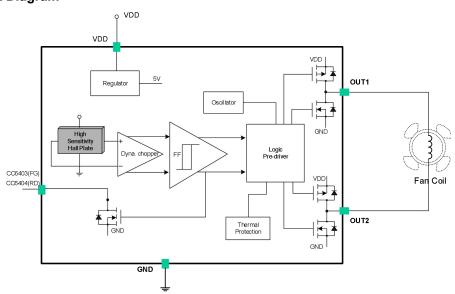
General Description

CC6403/4 is a one-chip solution for driving single-coil brushless DC fans and motors, which is fabricated with innovative high voltage BiCMOS process. It includes high sensitivity hall sensor, chopper stabilized amplifier, dynamic offset cancellation, thermal protection and a low R_{DSON} full bridge driver. With the benefit of the advanced process, the chip consumed power is very low, just only 2mA, much smaller than the drivers fabricated by bipolar process. Its robustness perfectly suits for consumer applications.

CC6403/4 has auto-restart function. When the fan is mechanically blocking, IC will shutdown the coil current and restart every time until the blocking release. Thus, the current flow the coil is low enough and protect the fan from over-heating. CC6403/4 can withstand the instantaneous 40V high voltage to ensure the reliability of the fan in various application environments.

CC6403 has Speed counting function (Tachometer Output FG), CC6404 has Locking alarm function (Alarm Output RD).

CC6403/4 is available in two packages, which are SOT89-5 and SOT335. The operation temperature range is -40~125°C.

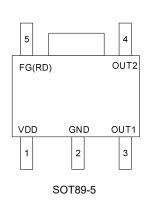

Features

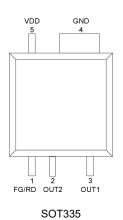
- Built-in High Sensitivity Hall Sensor
- Low Rdson with 1.5Ω
- ◆ Low Power Consumption, Typical 2mA
- Locked Rotor Protection and Auto-restart
- Driving Capability:
 - Maximum Continuous Current: 450mA
 - Peak Output Current: 1500mA
- ◆ Tachometer Output FG(CC6403) or Alarm Output RD(CC6404)
- Superior Temperature Stability
- Resistant to Physical Stress
- ◆ ESD (HBM) 6000V

Application

- Single Phase BLDC Fans
- ◆ Single Phase BLDC Motors

Function Block Diagram





Ordering Information

Part No.	Description	Package Code
CC6403ST	SOT89-5	Tape reel, 1000pcs/reel
CC6404ST	SOT89-5	Tape reel, 1000pcs/reel
CC6403SS	SOT335	Tape reel, 10000pcs/reel
CC6404SS	SOT335	Tape reel, 10000pcs/reel

PIN Configurations

Pin Name	Number Number		Function
FIII Naille	SOT89-5	SOT335	FullClion
VDD	1	5	Supply Voltage
OUT1	3	3	H bridge output 1
OUT2	4	2	H bridge output 2
GND	2	4	GND
FG/RD	5	1	Tachometer/Alarm

Absolute Maximum Ratings

Parameter	symbol		value	unit
Fan Supply Voltage	V	DD	40	V
Peak Output Current	Io	UTP	1500	mA
Continuous Output Current	Ic	ONT	450	mA
withstand voltage of FG/RD	V _{(FG/I}	RD) MAX	40	V
withstand current of FG/RD	I(FG/RD) MAX		10	mA
Operating Temperature Range	T _A		-40~125	°C
Junction Temperature	-	Гл	160	°C
Thermal Resistance Junction - Ambient	D	SOT335	195	°C/W
i nermai Resistance Junction - Ambient	R_{thJA}	SOT89-5	63	_ C/vv
Storage Temperature	Ts		-55~150	°C
Magnetic Flux Density	В		Unlimited	mT
ESD Susceptibility (HBM)	ESD(HBM)	6000	V

Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-maximum rated conditions for extended periods may degrade device reliability.

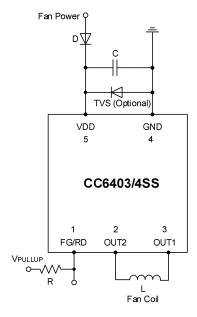
Recommended Operation Conditions

Parameter	symbol	MIN	MAX	unit
Fan Supply Voltage	V _{DD}	2.8	32	V
Continuous Output Current	Іоитс	-	400	mA
Ambient Temperature	T _A	-20	125	°C

Electrical Parameters (VDD=18V @ 25°C room temperature, unless specified otherwise)

Parameter	Symbol	Condition	Min	Тур.	Max	Unit
Fan Supply Voltage	V _{DD}	-	2.8	-	36	V
Supply Current	I _{DD}	-	-	2	4	mA
Output V _{SAT} (sink)	W	V _{DD} =14V, I _{OUT} =200mA	-	0.15	-	V
Output V _{SAT} (source)	- V _{SAT}	V _{DD} =14V, I _{OUT} =200mA	-	V _{DD} -0.25	-	V
Output Rise Time	t _r	R _L =820Ω, C _{L=} 20pF	-	7	-	us
Output Fall Time	t _f	R _L =820Ω, C _{L=} 20pF	-	7	-	us
Output Dead Time	t _{DEAD}	R _L =820Ω, C _{L=} 20pF	-	60	-	us
Locked Rotor ON Time	T _{ON}	V _{DD} >7V	-	0.33	-	s
Locked Rotor OFF Time	T _{OFF}	V _{DD} >7V	-	2	-	s

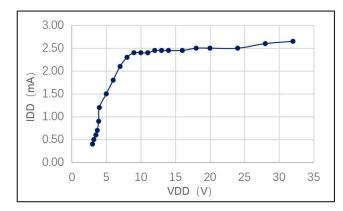
Magnetic Specifications

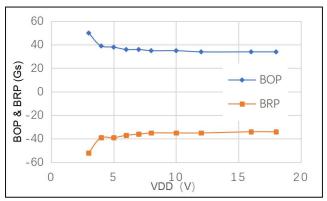

Parameter	Symbol	Min	Тур.	Max	Unit
Operate Point	B _{OP}	15	30	45	Gauss
Release Point	B _{RP}	-45	-30	-15	Gauss
Hysteresis	Внуѕ	30	60	90	Gauss

Driver Output vs. Magnetic Pole

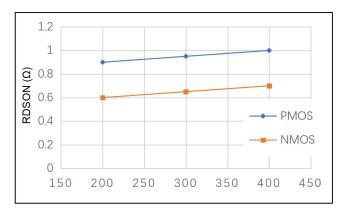
Parameter	Test Condition	OUT1	OUT2
North Pole	B< B _{OP}	High	Low
South Pole	B> B _{RP}	Low	High

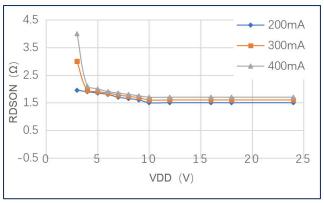
Typical Application Circuit


CC6403/4 Typical Application Circuit


NOTE:

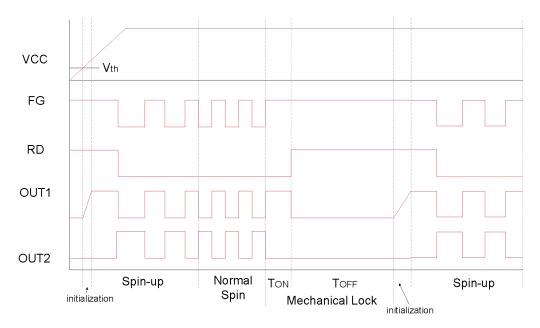
- a) Capacitor C can improve the reliability and efficiency of fans. Schottky diode D can decrease the operation voltage.
- b) Capacitor C can decrease the noise of fan and decrease the spike of outputs.
- c) TVS is optional, which can improve the ability to absorb external abnormal conditions.


Waveform



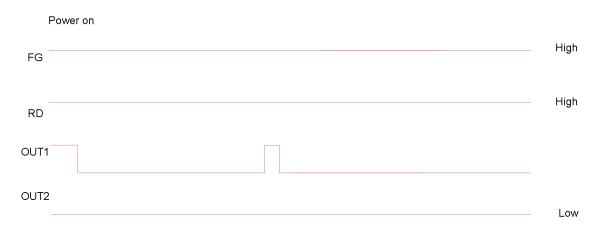
Bop&B_{RP} vs. VDD

R_{DSON} vs. I_{OUT}


R_{DSON} vs. VDD

Typical Application Waveform

CC6403/4 is an efficient one-chip solution for driving single-coil brushless DC fans and motors. CC6403 has an open-drain tachometer output FG and CC6404 has an open-drain blocking alarm.


The locked rotor protection will shutdown the coil current when the rotor is mechanically blocked over 0.33s. And try to restart every 2s until the locking is released. It can prevent fans from the damage of overheat. (The following figure is the start sequence diagram, OUT1 and OUT2 only indicate the level is high or low).

Note: After initialization, the RD signal is pulled down after the first OUT waveform is reversed.

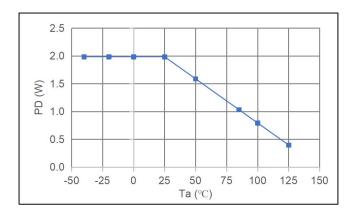
Keep Locked Rotor Waveform

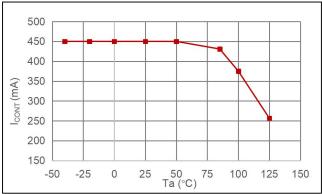
The waveform on the keep locked rotor is shown in the figure below. The states of OUT1 and OUT2 may be interchanged, depending on whether the magnetic field on the chip surface is the south pole or the north pole. The magnetic field on the chip surface corresponding to the state of the picture below is the North Pole.

Power Dissipation & Maximum Output Current

The power dissipation is determined by the following equation (Note: K is the recommended coefficient):

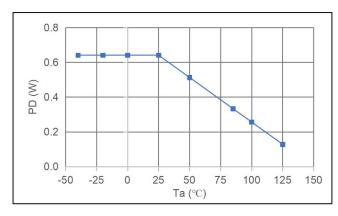
$$P_{D(MAX)} = (T_I - T_A)/\theta_I \times K$$

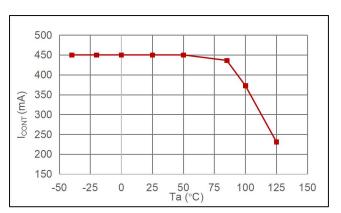

While normal operation, the power dissipated in CC6403/4:


$$P = I_{CONT}^2 \times R_{DSON} + V_{DD} \times I_{DD}$$

The maximum output current I_{MAX}:

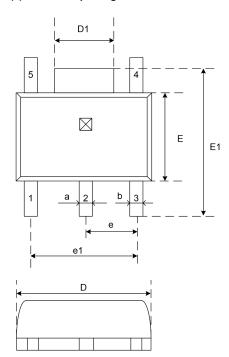
$$I_{MAX} = \sqrt{(P_{D(MAX)} - V_{DD} \times I_{DD})/R_{DSON}}$$

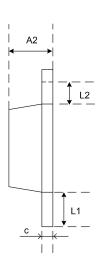

The PD curve and the output current curve



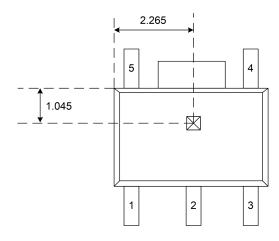
Power Dissipation of SOT89-5

Maximum Output Current of SOT89-5


Power Dissipation of SOT335


Maximum Output Current of SOT335

Package Information


(1) SOT89-5 package

Symbol	Millim	neters
Symbol	Min	Max
A2	1.4	1.6
а	0.45	0.55
b	0.38	0.47
С	0.36	0.46
D	4.40	4.60
D1	1.60	1.80
E	2.30	2.60
E1	4.10	4.30
е	1.00	2.00
e1	2.95	3.05
L1	0.95	1.05
L2	0.65	0.80

Hall location

Note

1. All dimensions are millimeters

Marking:

1'st line: CC6403/4- product name

2'nd line: XXYYWW

XX – code

YY - last 2 digits of year

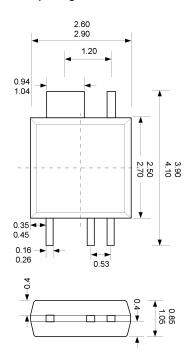

WW - week

Packaging & Tape reel

Information of Reel size

User Direction of Feed

Note: Each plate has 24 \pm 5 grids in front of the tape and 70 \pm 5 in the tail


Cumbal	Millin	neters
Symbol	Min	Max
W	11.85	12.15
E	1.65	1.85
F	5.45	5.55
D0	1.40	1.60
D1	1.40	1.60
P0	3.90	4.10
P1	7.90	8.10
P2	1.95	2.05
A0	4.60	4.80
В0	4.70	4.90
K0	1.60	1.80
t	0.19	0.21

Note:

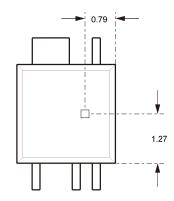
1. All dimensions are millimeters

(2) SOT335 package

Note:

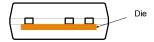
1. All dimensions are millimeters

Back Marking:

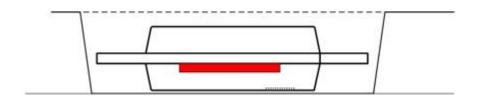

1'st line: 6403/4- product name

2'nd line: YYWW

YY - last 2 digits of year

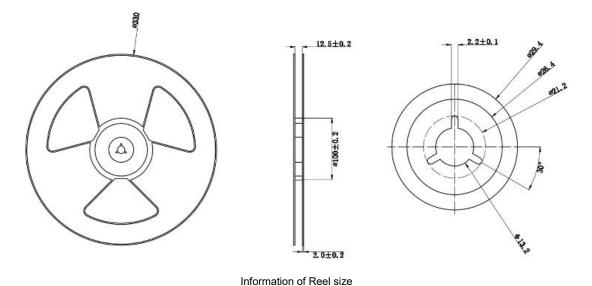

WW – week

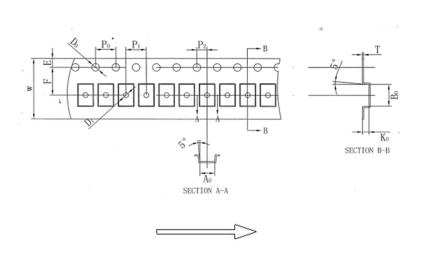
Hall location



Note:

1. All dimensions are millimeters




Information of carrier tape

Packaging & Tape reel

User Direction of Feed

Note: Each plate has	100 ± 5 arids in fro	ont of the tape and	100 ± 5 in the tail

Comple of	Millimeters			
Symbol	Min	Typical	Max	
W	11.90	12.00	12.05	
A0	2.90	2.95-	3.00	
В0	4.30	4.35	4.40	
K0	1.30	1.35	1.40	
E	1.65	1.75	1.85	
F	5.40	5.50	5.60	
D1	-	1.00	1.10	
D0	-	1.50	1.60	
P0	3.90	4.00	4.10	
P1	3.90	4.00	4.10	
P2	1.95	2.00	2.05	
t	0.20	0.25	0.30	

Note:

1. All dimensions are millimeters

CrossChip

CrossChip Microsystems Inc. was founded in 2013, is a national high-tech enterprise, engaged in integrated circuit design and sales. The company has strong technical strength, has more than 60 kinds of patents, mainly used in Hall sensor signal processing, with the following product lines:

- ✓ High precision linear Hall sensor
- ✓ All kinds of Hall switches
- ✓ Single phase motor drive
- ✓ Single chip current sensor
- ✓ AMR Magnetoresistance sensor
- ✓ Isolation drive class chip

Contact us

Chengdu

Address: 4th floor, unit 2, building 3, No. 88, Tianchen Road, Gaoxinxi Zone, Chengdu, Sichuan Province

Tel: + 86 - 028 - 87787685

Email: support@crosschipmicro.com

Website: https://www.crosschipmicro.com

Shenzhen

Address: 605 room, 6F, Beike building, NO.18 Keyuan Rd, Yuehai Street, Nanshan District, Shenzhen

Shanghai

Address: Room 602, Building 1, Shengda Tiandi Yuanchuanggu, No. 88, Shengrong Road, Pudong New District, Shanghai

Suzhou

Address: NO.78 Jinshan Rd East, Suzhou High-tech Zone, Huqiu District, Suzhou City, Jiangsu Province