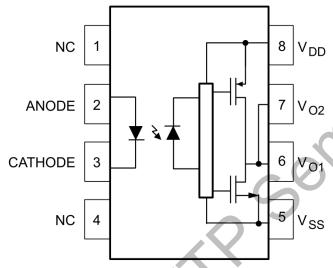


HCPL-3150


---高抗噪能力、1.0A 输出电流、栅极驱动光电耦合器

1.概述:

HCPL-3150 是一个 1.0A 的输出电流栅极驱动 光电耦合器,可驱动大部分 800V/20A IGBT/ MOSFET。它非常适用于快速开关驱动在电机控制 逆变器应用以及高性能电源系统中使用的功率 IGBT 和MOSFET。

它由铝砷化镓(AlGaAs)发光二极管组成,该二极管以光学方式耦合到具有高速驱动器的集成电路,以实现推挽式 MOSFET 输出级。

2.功能图:

HCPL-3150 功能框图(1)(2)

注:

- (1)5、8 脚间必须接 0.1uF 的旁路电容。
- (2) 外围电路需要连接引脚 6 和引脚 7。

3.特性:

- 具有 20kV/µs(最小值)共模抑制特点的高抗 噪能力
- 使用输出级的 P 沟道 MOSFET 可使输出电压摆幅接近供电轨
- 15V至30V的宽电源电压范围

● 快速开关速度

- 500ns (最大值)传播延迟
- 300ns (最大值)脉宽失真度
- 带滞后的欠压锁存(UVLO)
- 扩展工业温度范围-40℃至100℃

4.应用:

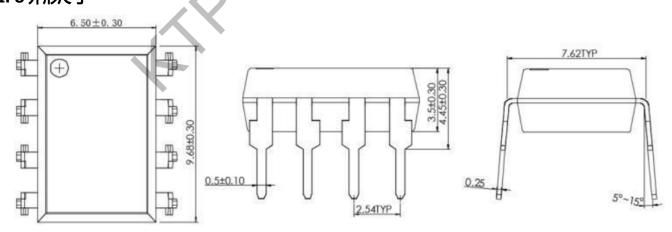
- 工业逆变器
- 不间断电源
- 感应加热
- 隔离 IGBT/功率 MOSFET 栅极驱动

5.注意:

建议在处理和组装该器件时采取常规的静电预防措施,以防止静电放电可能导致产品的损坏或退化。

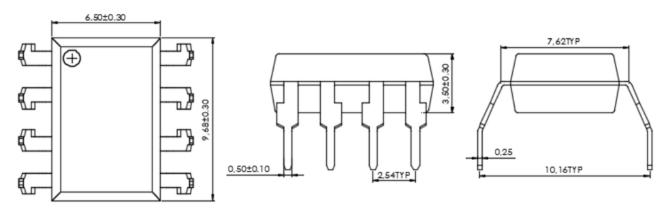
6.真值表:

LED	V _{DD} -V _{SS} "正向" (Turn-on)	V _{DD} -V _{SS} "反向" (Turn-off)	Vo
OFF	0V to 30V	0V to 30V	低电平
ON	0V to 11V	0V to 9.7V	低电平
ON	11V to 14V	9.7V to 12.7V	不确定 (变换区间)
ON	14V to 30V	12.7V to 30V	高电平

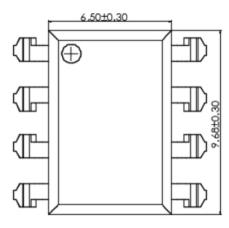

7.引脚定义:

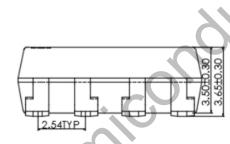
PIN	名称 功能		
1	NC	不连接	
2	Anode	LED 正极	
3	Cathode	LED 负极	
4	NC NC	不连接	
5	V _{SS}	负电源电压	
6	V _{O1}	输出电压 1	
7	V _{O2}	输出电压 2(内部与 Voi 连接)	
8	V _{DD}	正电源电压	

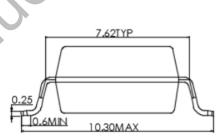
8.外形尺寸:

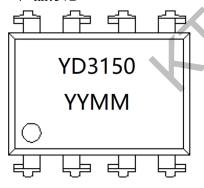

单位:毫米(mm)

DIP8 外形尺寸






DIP8(M)外形尺寸


SMD8 外形尺寸

9.产品标记:

YY=生产年份末两位数字(如 "2021年" 印 "21")

MM=生产周次两位数字(如 "第一周" 印 "01")

10.最大额定值(除非另有规定, T_A=25℃):

参数	符号	额定值	单位
贮存温度	T_{STG}	-55 to +125	$^{\circ}$
工作温度	T_{OPR}	-40 to +100	$^{\circ}$
结温	$T_{\mathfrak{I}}$	-40 to +125	$^{\circ}$
引线波峰焊温度	T_{SOL}	260 for 10 sec	℃
平均输入电流	${ m I}_{\sf F(AVG)}$	25	mA
反向输入电压	V_R	5	V
峰值输出电流(3)	${ m I}_{{ m O(PEAK)}}$	1.5	Α
电源电压	V_{DD} - V_{SS}	0 to 35	V
峰值输出电压	$V_{O(PEAK)}$	0 to V _{DD}	V
输入信号上升和下降时间	$t_{R(IN)}$, $t_{F(IN)}$	500	ns
输入功率耗散(4)(6)	PD_{I}	45	mW
输出功率耗散(5)(6)	PDo	250	mW

超过最大额定值表中列出的应力可能会损坏器件。如果超过这些限制中的任何一个,可能会影响器件的功能,损坏器件并影响可靠性。

注: (3)最大脉宽=10us,最大占空比=0.2%。

- (4) 大气环境下 87℃以上,按 0.77mW/℃线性降额。
- (5)在额定温度范围内不需降额。
- (6)并非表示要在这些条件下工作。如果器件处于这些额定值以外的条件下,则可能会造成永久性损坏。

11.推荐工作条件:

参数	符号	值	单位
工作环境温度	T _A	-40 to +100	°C
电源电压	V _{DD} -V _{SS}	15 to 30	V
输入电流(ON)	I _{F(ON)}	7 to 16	mA
输入电压 (OFF)	$V_{F(OFF)}$	0 to 0.8	V

不建议在推荐工作条件列出的应力值范围外工作。长期在超过推荐工作条件的应力下可能会影响设备的可靠性。

12.隔离特性:

除非另有规定,适用于所有的推荐条件,典型值在T_A=25℃下测量。

参数	符号	条件	最小值	典型值	最大值	单位
入出间隔离电压(7)(8)	V _{ISO}	$T_{A}{=}25^{\circ}\text{C}$, R.H. ${<}50\%$, t=1.0minute, $I_{\text{I-O}}{\leq}10\text{uA}$, 50Hz	5000			V_{RMS}
隔离电阻(7)	R _{ISO}	V _{I-O} =500V		1011		Ω
隔离电容(7)	C _{ISO}	V _{I-O} =0V,频率=1.0MHz		1		pF

注:(7)将器件看作二端器件:引脚2、3短接在一起,引脚5、6、7和8短接在一起。

(8) 5000V_{RMS}, 时间 1min 等于 6000VAC_{RMS}, 时间 1sec。

13.电气特性:

除非另有规定,适用于所有的推荐条件,典型值在 V_{DD} =30V, V_{SS} =Gnd, T_A =25 $^{\circ}$ C下测量。

参数	符号	条件	最小值	典型值	最大值	单位	
输入正向电压	V_{F}	I _F =10mA	1.2	1.5	1.8	V	
正向电压的温度系数	$\Delta(V_F/T_A)$			-1.8		mV/°C	
输入反向击穿电压	BV _R	I _R =10uA	5			V	
输入电容	C _{IN}	f=1MHz , V _F =0V		60		pF	
言中亚松山中 沟(9)	т	$V_O = V_{DD} - 0.75V$	0.2			A	
高电平输出电流 ⁽⁹⁾ 	$ m I_{OH}$	$V_O = V_{DD} - 4V$	1.0				
作中亚松山中 济(9)	т	$V_O = V_{DD} + 0.75V$	0.2	\$		^	
低电平输出电流 ⁽⁹⁾ 	$ m I_{OL}$	$V_O = V_{DD} + 4V$	1.0			Α	
高电平输出电压	V _{OH}	I_F =10mA , I_O =-1A	V _{DD} -6V	V_{DD} -4 V		V	
		I_F =10mA , I_O =-100mA	V _{DD} -0.5V	V_{DD} $-0.1V$		V	
低电平输出电压	V _{OL}	I_F =0mA , I_O =1A		V _{SS} +4V	V _{SS} +6V	V	
		I_F =0mA , I_O =100mA		V _{SS} +0.1V	V _{SS} +0.5V	V	
高电平电源电流	${ m I}_{ m DDH}$	V_O =Open , I_F =7 to 16mA		2.8	5	mA	
低电平电源电流	${ m I}_{ m DDL}$	V_O =Open , V_F =0 to 0.8V		2.8	5	mA	
低到高输入开启电流	\mathbf{I}_{FLH}	$I_O=0$ mA , $V_O>5$ V		2.3	5.0	mA	
高到低输入关闭电压	V_{FHL}	I_O =0mA , V_O <5V	0.8			V	
(压由 压纵 产) (压力	$V_{\text{UVLO+}}$	$I_F=10\text{mA}$, $V_O>5V$	11	12.7	14	V	
低电压锁定阈值 	V _{UVLO}	$I_F=10mA$, $V_O<5V$	9.7	11.2	12.7	V	
低电压锁定阈值迟滞	UVLO _{HYS}			1.5		V	

除非另有说明,否则产品参数性能在所列测试条件的电气特性中表示。 如果在不同的条件下运行,则产品性能可能无法通过电气特性来表示。

注: (9)最大脉宽=10us,最大占空比=0.2%。

14.开关特性:

除非另有规定,适用于所有的推荐条件,典型值在 $V_{DD}=30V$, $V_{SS}=Gnd$, $T_A=25$ °C下测量。

参数	符号	条件	最小值	典型值	最大值	单位
逻辑低电平传输延迟	t _{PHL}		100	275	500	ns
逻辑高电平传输延迟	$t_{\scriptscriptstylePLH}$	I _F =7mA to 16mA ,	100	255	500	ns
脉宽失真 tphl-tplh	PWD	Rg=20Ω ,		20	300	ns
任意二个器件或通道间的 传输延迟差,(t _{PHL} -t _{PLH}) ⁽¹⁰⁾	PDD (Skew)	Cg=10nF , f=10kHz ,	-350		350	ns
输出上升时间(10%~90%)	t _R	DutyCycle=50%		60		ns
输出下降时间(90%~10%)	t _F			60		ns
UVLO 开启延迟	t _{UVLO ON}	$I_F=10\text{mA}$, $V_O>5V$		1.6		μs
UVLO 关闭延迟	t _{UVLO OFF}	$I_F=10\text{mA}$, $V_O<5V$		0.4		μs
输出高电平共模抑制(11)	CM _H	T_A =25°C , V_{DD} =30V , I_F =7 to 16mA , V_{CM} =2000V	20	50		kV/µs
输出低电平共模抑制(12)	CM _L	$T_A=25^{\circ}C$, $V_{DD}=30V$, $V_F=0V$, $V_{CM}=2000V$	20	50		kV/µs

- 注:(10)指任意二个 HCPL-3150 器件,在相同的测试条件下则与 tput 之间的差。
 - (11)输出高电平共模抑制指,最大可承受共模脉冲信号后沿的反向 dVcm/dt, V_{CM} ,并保持输出高电平 (即: $V_O>15V$)。
 - (12)输出低电平共模抑制指,最大可承受共模脉冲信号前沿的正向 dVcm/dt, V_{CM} ,并保持输出低电平 (即: $V_O < 1.0V$)。

15.典型性能曲线:

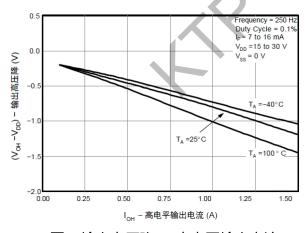


图 1.输出高压降 vs.高电平输出电流

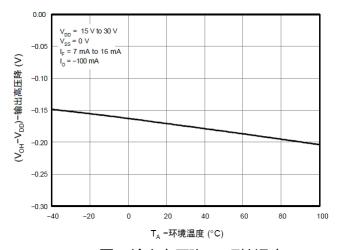


图 2.输出高压降 vs.环境温度

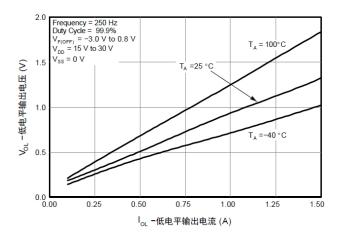


图 3.低电平输出电压 vs.低电平输出电流

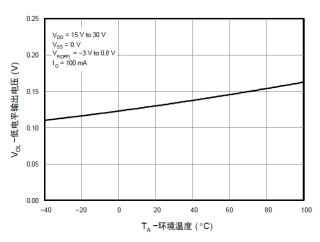


图 4.低电平输出电压 vs.环境温度

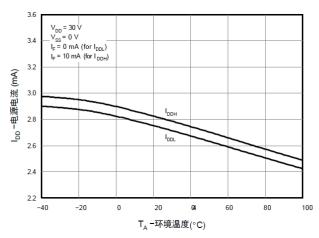


图 5.电源电流 vs.环境温度

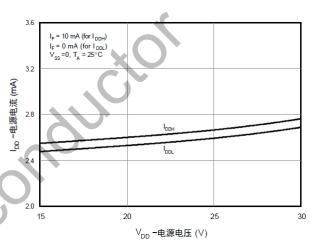


图 6.电源电流 vs.电源电压

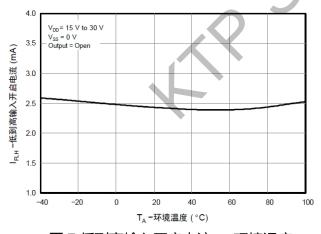


图 7.低到高输入开启电流 vs.环境温度

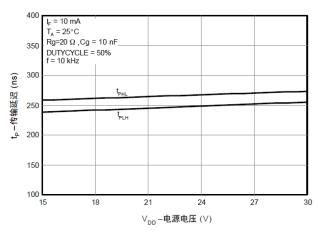


图 8.传输延迟 vs.电源电压

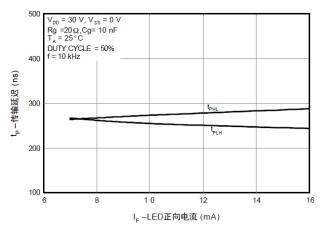


图 9.传输延迟 vs.LED 正向电流

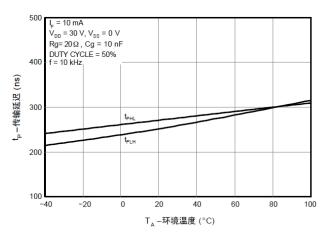


图 10.传输延迟 vs.环境温度

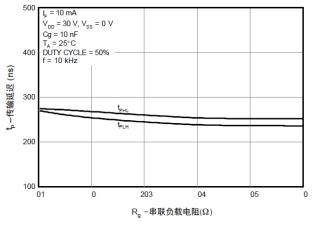


图 11.传输延迟 vs.串联负载电阻

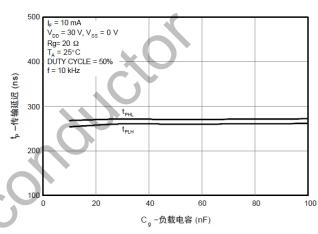


图 12.传输延迟 vs.负载电容

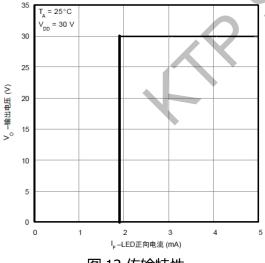


图 13.传输特性

图 14.LED 正向电流 vs.LED 正向电压

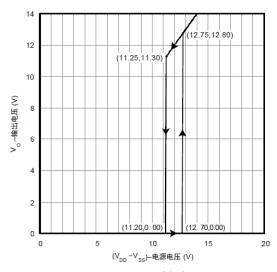
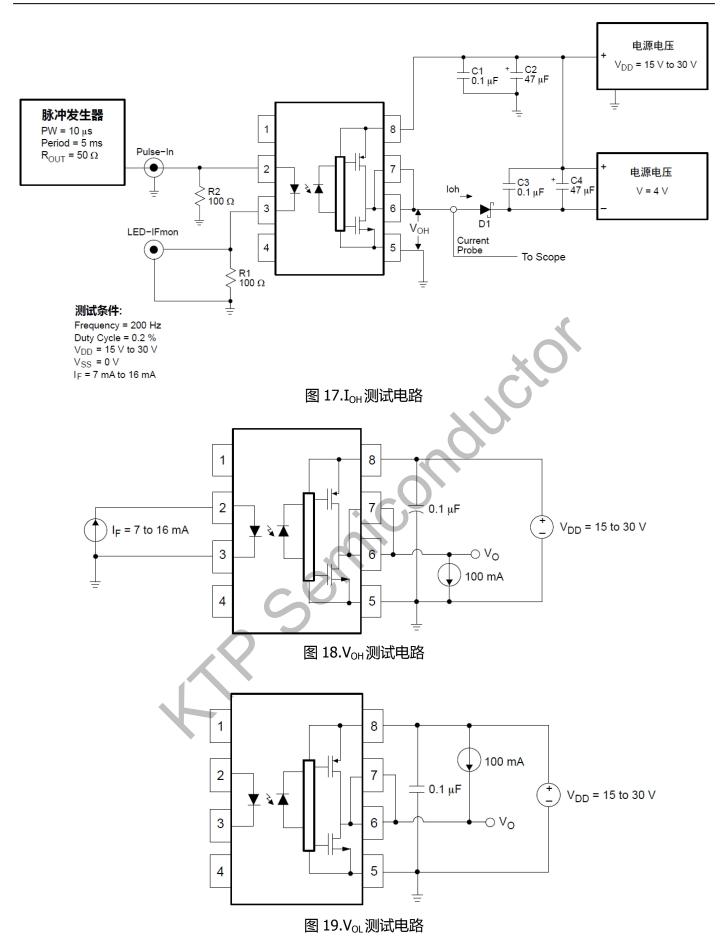



图 15.欠压锁定

16.测试电路 电源电压 V_{DD} = 15 V to 30 V 脉冲发生器 PW = 4.99 msPeriod = 5 ms Pulse-In $R_{OUT} = 50 \Omega$ 2 ≷R2 100 Ω 电源电压 3 V = 4 V D1 LED-IFmon V_{OL} 5 To Scope 测试条件: Frequency = 200 Hz Duty Cycle = 99.8 % V_{DD} = 15 V to 30 V V_{SS} = 0 V $V_{F(OFF)} = -3.0 \text{ V to } 0.8 \text{ V}$

图 16.I_{OL}测试电路

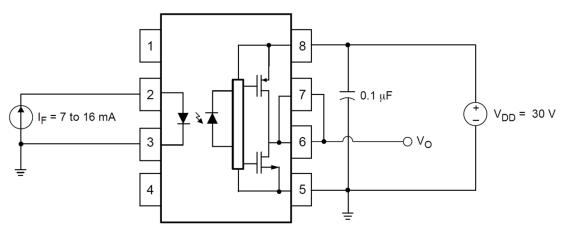


图 20.I_{DDH}测试电路

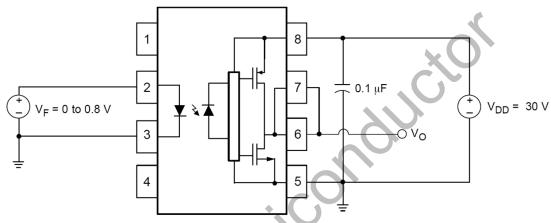
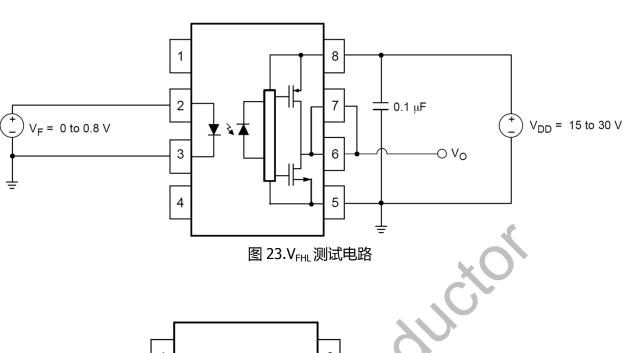
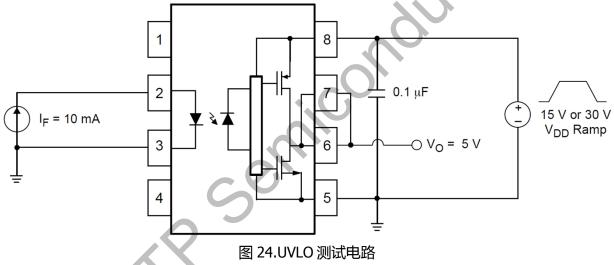
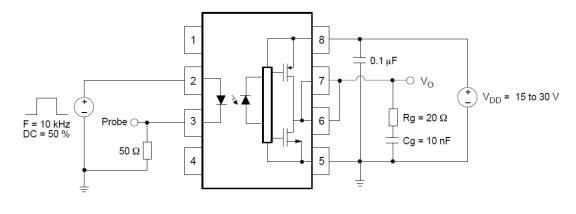




图 21.I_{DDL}测试电路



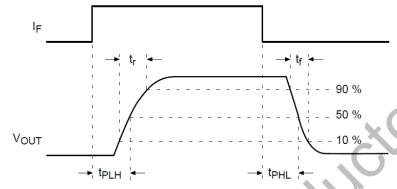


图 25.t_{PHL} , t_{PLH} , t_R , t_F测试电路与波形

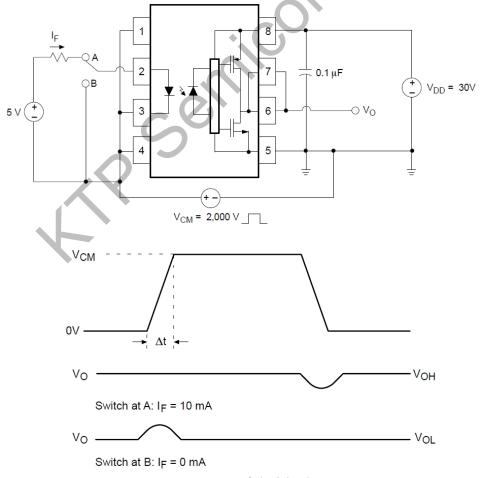


图 26.CMR 测试电路与波形