■ 概述:

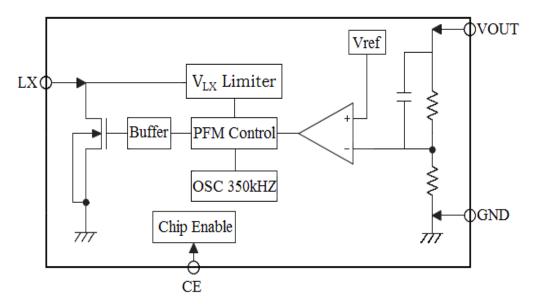
MD88XX 系列产品是一种高效率、低纹波的 PFM 控制型 DC-DC 升压稳压芯片。该系列产品具有极低的启动电压和高输出电压精度。应用时仅需电感、电容、肖特基二极管三个外部元器件,就可完成将低输入的电池电压升压至所需的工作电压。

MD88XX 芯片内部包括输出电压反馈和补偿网络、启动电路、振荡电路、PFM 控制电路、参考电压电路、过流保护电路以及输出功率管。此芯片采用 PFM 控制方式,在大范围内可获得较低的输出纹波和高效率。

MD88XX 可提供 SOT-89-3、SOT-23-3、SOT-89-5 及 SOT-23-5 封装形式。在 SOT-89-5 及 SOT-23-5 封装形式中,通过 CE 使能端,可方便控制芯片的开关,使芯片的功耗达到最小。

■ 特性:

- ◆ 低启动电压: 典型值为 0.75V, (Iout=1mA 时)
- ◆ 带载能力强:


当 Vin= 3.0V, Vout= 5.0V 时, Iout= 300mA

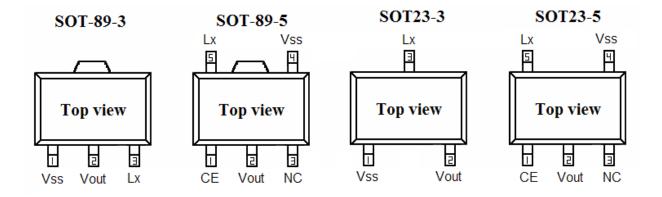
- ◆ 低静态电流: 4uA(Typ)
- ◆ 低关断电流: 0.1uA
- ◆ 高效率: 85% (Typ)
- ◆ 输出电压精度: ±2.5%

■ 用途:

- ◆ PDA、MP3 Player、电动玩具、无线鼠标等 便携式电池供电设备
- ◆ 照相机、视频设备、通信设备的稳压电源
- ◆ 单、双节电池供电设备的电源部分
- ◆ 给 LED 灯提供能源

■ 系统框图:

www.md-ic.com.cn -1-


■ 选型指南 (MD88XX)

型号	输出电压	封装形式	打印内容
MD8818*	1.8V		
MD8827*	2.7V	SOT-89-3	
MD8830	3.0V	SOT-89-5	MD88XX
MD8833	3.3V	SOT-23-3	MD88AA
MD8836	3.6V	SOT-23-5	
MD8850	5.0V		

备注: "XX"代表输出电压。

"*"表示目前无库存现货,需提前预订。

■ 封装引脚排列及引脚说明:

引脚定义表

	引肤	7号		符号	引脚描述	
SOT-89-3	SOT-89-5	SOT-23-3	SOT-23-5	1ม 🕏	717种细处	
1	4	1	4	Vss (GND)	接地引脚	
2	2	2	2	Vout	输出电压监测,内部电路供电引脚	
3	5	3	5	Lx	开关引脚	
_	3	_	3	NC	空脚	
_	1	_	1	CE	使能端	

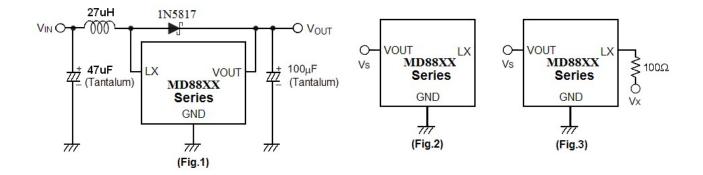
www.md-ic.com.cn - 2 -

■ 极限参数:

i	说明	符号	绝对最大额定值	单位
Vo	_{UT} 电压	$V_{ m OUT}$	V_{SS} -0.3 \sim V_{SS} +12	V
Cl	E电压	V_{CE}	V_{SS} -0.3 \sim V_{OUT} +0.3	V
L	X电压	V_{LX}	V _{SS} -0.3~V _{SS} +12	V
L	X电流	I_{LX}	1000	mA
	SOT-89-3	P_{D}	0.5	W
△ <i>></i> /	SOT-89-5		0.5	W
允许功耗	SOT-23-3		0.25	W
	SOT-23-5		0.25	W
工作	温度范围	Tmin-max	-40~+85	${\mathbb C}$
存储法	存储温度范围		-40~+125	$^{\circ}$
焊接温	温度和时间	Tstorage	260°C,10S	°C,S

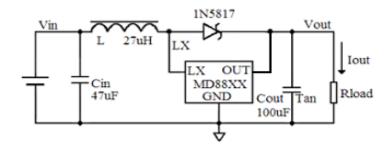
■ 产品主要参数:

V_{IN}=V_{OUT}*0.6; I_{OUT}=10mA; Ta=25℃ (除特殊说明外)

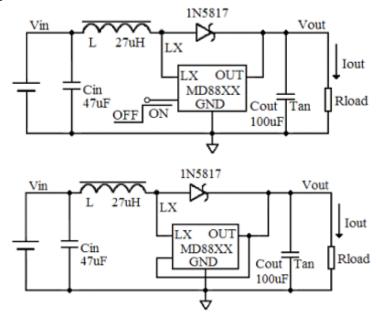

参数	符号	III \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	数值			并
少 级	<u>1</u> च उ	测试条件	最小	典型	最大	单位
输出电压精度	△Vout	_	-2.5		+2.5	%
输入电压	Vin	_	_	_	10	V
启动电压	Vstart (Fig.1)	Iout=1mA, Vin : 0→2V	_	0.75	0.9	V
保持电压	Vhold (Fig.1)	Iout=1mA, Vin: $2 \rightarrow 0V$			0.7	V
输入电流	Iin (Fig.1)	Iout=0mA	_	15	20	uA
静态功耗	I _{DD} (Fig.2)	$V_S = V_{OUT} + 0.5V$	_	4	7	uA

www.md-ic.com.cn - 3 -

关断电流	I_{SHDN}	CE=GND	_	_	0.5	uA
CE 高电平	V_{CEH}	_	0.9	_	_	V
CE 低电平	V_{CEL}	_	_	_	0.6	V
功率管导通电阻	R_{SWON}	_	_	0.4	0.5	Ω
开关管漏电流	I _{LEAK} (Fig.3)	$V_S = V_{OUT} + 0.5V, V_X = 6V$	_	_	0.5	uA
振荡频率	F _{OSC} (Fig.3)	$V_S = V_{OUT} * 0.95$	300	350	400	kHz
占空比	D _{OSC} (Fig.3)	$V_S = V_{OUT} * 0.95$	65	75	85	%
效率	η	_	_	85	_	%


备注: 上述表格中 Fig.1、Fig.2、Fig.3 指对应下面的测试电路标号。

■ 产品测试电路:


■ 产品应用电路:

SOT-89-3 及 SOT-23-3 封装

www.md-ic.com.cn

SOT-89-5 及 SOT-23-5 封装

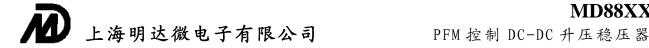
■ 外围元器件选择:

BOOST 结构DC-DC 转换器的功耗损失主要是由于电感的寄生串联电阻、肖特基二极管的正向导通压降、功率管的导通电阻以及开关损耗这四个方面,当然芯片本身的静态功耗在低负载的情况下也会影响转换效率。为了获得较高的转换效率,除了用户选择合适的电感、肖特基二极管和电容外,芯片内部的功率管导通电阻也需非常小。同时芯片内部设计了合适的驱动电路,保证了功率管开关沿很陡,大大减小了开关的功率损耗。

电感和肖特基二极管选择的不同会影响转换效率,电容和电感选择的不同会影响输出的纹波。选择合适的电感、电容、肖特基二极管可以获得高转换效率、低纹波、低噪声。

1、电感选择

电感值有以下几个方面需要考虑:


第一,首先需要保证使得BOOST DC-DC能够在连续电流模式下正常工作所需要的最小电感值Lmin,

$$L\min \ge \frac{D(1-D)^2 R_L}{2f}$$

该公式是在连续电流模式下,忽略其他诸如寄生电阻、二极管的导通压降的情况下推导出的,实际的值还要大一些。如果电感取值小于Lmin,电感可能会发生磁性饱和,造成DC-DC 电路的效率大大下降,甚至不能正常输出稳定电压。

第二,考虑到通过电感的电流纹波问题,同样在连续电流模式下忽略寄生参数,

www.md-ic.com.cn -5-

$$\Delta I = \frac{D \bullet Vin}{Lf} \qquad \qquad \text{Im } ax = \frac{Vin}{(1-D)^2 R_L} + \frac{DVin}{2Lf}$$

当L过小时,会造成电感上的电流纹波过大,造成通过电感、肖特基二极管和芯片中的功率管的最大电 流过大。由于功率管并不是理想的,所以在特别大的电流时功率管上的功率损耗会加大,导致整个DC-DC 电路的转换效率降低。

第三,一般来说,不考虑效率问题时,小电感可以带动的负载能力强于大电感。但是由于在相同负载 条件下,大电感的电流纹波和最大电流值小,所以大电感可以使得电路在更低的输入电压下启动。(以上 均是在相同的寄生电阻条件下推导出的结论)

MD88XX 的工作频率高达350KHz,目的是为了能够减小外部的电感尺寸,只需要3.3uH 以上的电感 就可以保证正常工作,但是输出端如果需要输出大电流负载(例如:输出电流大于50mA),为了提高工作 效率,建议使用较大电感。

同时,在大负载下,电感上的串联电阻会极大地影响转换效率,假设电感上的电阻为rL,负载电阻为 Rload, 那么在电感上的功率损耗大致如下式计算:

$$\Delta \eta \approx \frac{r_L}{R_{load}(1-D)^2}$$

综合考虑,建议使用27uH、<0.5Ω的电感。如果需要提高大负载效率,需要使用更大电感值、更小寄 生电阻值的电感。

2、输出电容选择

当考虑电容的ESR 时,输出电压的纹波为:

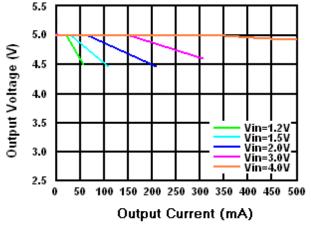
$$r = \frac{\Delta Vout}{Vout} = \frac{D}{R_{load}Cf} + \frac{\operatorname{Im} ax \bullet R_{ESR}}{Vout}$$

从公式中可以看出为了减小输出的纹波,需要比较大的输出电容值。但是输出电容过大,就会使得系 统的反应时间过慢。所以建议使用100uF电容,如果需要更小的纹波,则需要更大的电容。

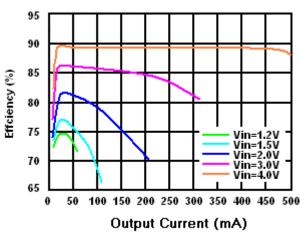
当输出连接大负载的时候,ESR造成的纹波将成为最主要的因素,同时ESR 又会增加效率损耗,降低 转换效率。所以建议使用ESR低的钽电容,或者多个电容并联使用。

3、二极管

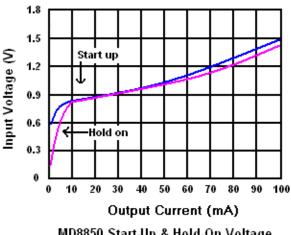
用于整流的二极管对DC-DC的效率影响很大,虽然普通的二极管也能够使得DC-DC电路工作正常,但 是会降低5~10%的效率, 所以建议使用正向导通电压低、反应时间低的肖特基二极管, 例如1N5817、1N5819、 1N5821、1N5822 等。

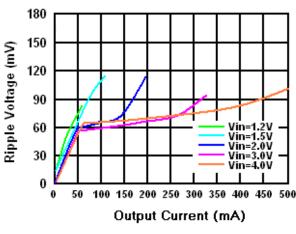

4、输入电容

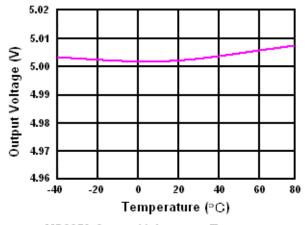
如果输入电源稳定,即使没有输入滤波电容,DC-DC电路也可以输出低纹波、低噪声的电流电压。但 是当电源离DC-DC电路较远,建议在DC-DC的输入端加上10uF以上的滤波电容,用于减小输出的噪声。

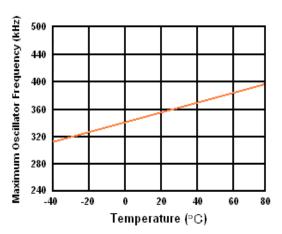

www.md-ic.com.cn - 6 -

产品典型参数曲线:


(测试条件: Cin=47uF, L=27uH, Cout=100uF, Vin=0.6*Vout, Ta=25℃, 有特殊说明的除外)

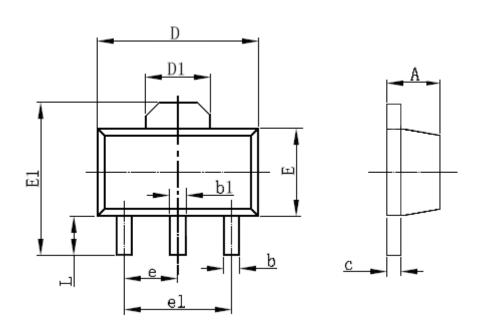

MD8850 Output Voltage v.s Output Current


MD8850 Effciency v.s Output Current


MD8850 Start-Up & Hold-On Voltage

MD8850 Ripple Voltage v.s Output Current

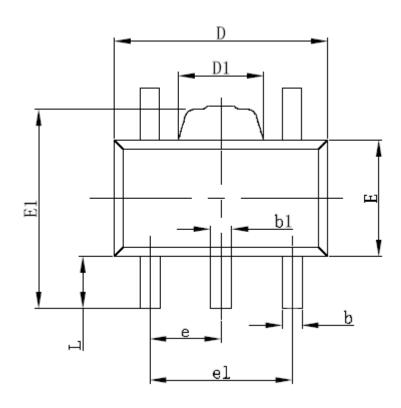
MD8850 Output Voltage v.s Temperature

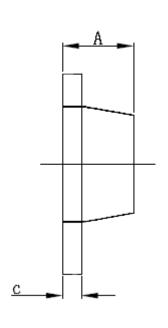


MD8850 Maximum Oscillator Frequency v.s Temperature

www.md-ic.com.cn - 7 -

■ 封装尺寸:

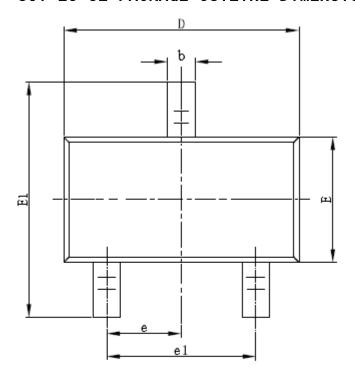

SOT-89-3L PACKAGE OUTLINE DIMENSIONS

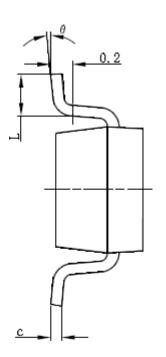


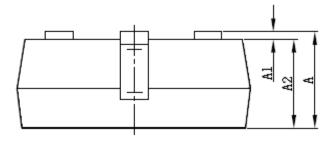
Symbol	Dimensions In Millimeters		Dimension	s In Inches
Symbol	Min	Max	Min	Max
A	1.400	1.600	0.055	0.063
b	0.320	0.520	0.013	0.020
bl	0.400	0.580	0.016	0.023
c	0.350	0.440	0.014	0.017
D	4.400	4.600	0.173	0.181
D1	1.550	REF	0.061 REF	
Е	2.300	2.600	0.091	0.102
E1	3.940	4.250	0.155	0.167
e	1.500 TYP		0.060 TYP	
e1	3.000 TYP		0.118 TYP	
L	0.900	1.200	0.035	0.047

www.md-ic.com.cn - 8 -

SOT-89-5L PACKAGE OUTLINE DIMENSIONS

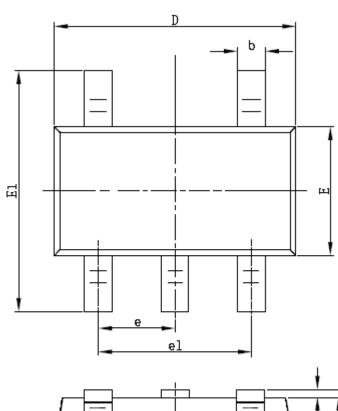


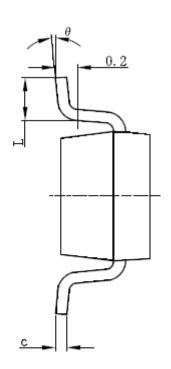


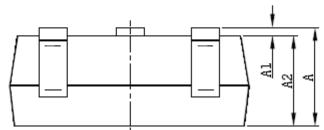

Symbol	Dimensions In Millimeters		Dimensions	s In Inches
	Min	Max	Min	Max
A	1.400	1.600	0.055	0.063
b	0.320	0.520	0.013	0.020
b1	0.360	0.560	0.014	0.022
С	0.350	0.440	0.014	0.017
D	4.400	4.600	0.173	0.181
D1	1.400	1.800	0.055	0.071
Е	2.300	2.600	0.091	0.102
E1	3.940	4.250	0.155	0.167
e	1.500 TYP		0.060	TYP
e1	2.900	3.100	0.114	0.122
L	0.900	1.100	0.035	0.043

www.md-ic.com.cn - 9 -

SOT-23-3L PACKAGE OUTLINE DIMENSIONS




Cross bol	Dimensions In Millimeters		Dimension	s In Inches
Symbol	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
c	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
Е	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
e	0.950	0.950(BSC)		(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°


www.md-ic.com.cn - 10 -

SOT-23-5L PACKAGE OUTLINE DIMENSIONS

Cross b ol	Dimensions In Millimeters		Dimension	s In Inches
Symbol	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
c	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
Е	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
e	0.950(BSC)		0.037	(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

www.md-ic.com.cn - 11 -

客户服务中心

上海明达微电子有限公司

地址: 上海市虹梅南路 1781 弄 143 号

电话: 021-64104739 传真: 021-64103832

E-Mail: sales@md-ic.com.cn

Web: www.md-ic.com.cn

www.md-ic.com.cn - 12 -