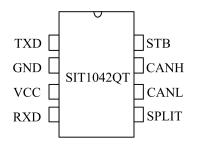
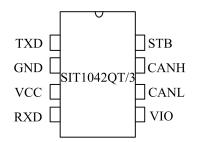
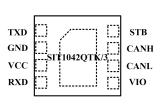

特点

- ➤ 完全兼容"ISO 11898"标准;
- ▶ 内置过温保护功能;
- ▶ 总线端口±58V 耐压;
- ▶ 驱动器(TXD)显性超时功能;
- ▶ 待机总线 (BUS) 显性超时功能;
- ▶ 带唤醒功能的低功耗待机模式;
- ➤ SIT1042QT/3 I/O 电压范围支持 3.3V 和 5V MCU;
- ➤ VCC 和 VIO 电源引脚上具有欠压保护;
- ▶ 高速 CAN, 支持 5Mbps CAN FD (灵活数据速率);
- ▶ 高抗电磁干扰能力;
- ▶ 未上电节点不干扰总线;
- ▶ 支持 HVSON8 / DFN3*3-8, 小外形, 无引脚封装;
- ➤ AEC-Q100 认证。

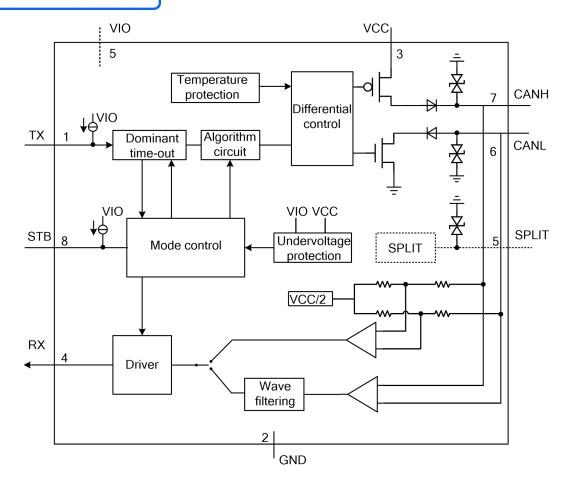
产品外形示意图


提供绿色环保无铅封装


描述


SIT1042Q 是一款应用于 CAN 协议控制器和物理总线之间的接口芯片,可应用于卡车、公交、小汽车、工业控制等领域,支持 5Mbps CAN FD 灵活数据速率,具有在总线与 CAN 协议控制器之间进行差分信号传输的能力。

参数	符号	测试条件	最小	最大	单位
供电电压	$ m V_{cc}$		4.5	5.5	V
最大传输速率	1/t _{bit}	非归零码	5		Mbaud
CANH、CANL 引脚电压	V_{can}		-58	+58	V
总线差分电压	$ m V_{diff}$		1.5	3.0	V
结温	Tj		-40	150	°C


引脚分布示意图

内部电路结构框图

极限参数

参数	符号	大小	单位
电源电压	VCC	-0.3~+7	V
MCU 侧端口	TXD,RXD, STB, VIO	-0.3~+7	V
总线侧输入电压	CANL,CANH	-58~58	V

6,7号引脚瞬态电压 见图7	$ m V_{tr}$	-200~+200	V
存储工作温度范围		-55~150	°C
结温		-40~150	°C
焊接温度范围		300	°C

最大极限参数值是指超过这些值可能会使器件发生不可恢复的损坏。在这些条件之下是不利于器 件正常运作的,器件连续工作在最大允许额定值下可能影响器件可靠性,所有的电压的参考点为地。

引脚定义

引脚序号	引脚名称	引脚功能
1	TXD	发送器数据输入端
2	GND	地
3	VCC	供电电源
4	RXD	接收器数据输出端
5	VIO	收发器 I/O 电平转换电源电压(SIT1042QT/3、SIT1042QTK/3 型号)
5	SPLIT	共模稳定输出端口(SIT1042QT 型号)
6	CANL	低电位 CAN 电压输入输出端
7	CANH	高电位 CAN 电压输入输出端
8	STB	高速与待机模式选择,低电平为高速

注: SIT1042QTK/3 封装背面金属焊盘推荐接地

ジェア な カ 特 5V 供电, IO 口兼容 3.3V, ±58V 总线耐压, 待机模式 CAN FD 总线收发器

总线发送器直流特性

参数	符号	测试条件	最小	典型	最大	单位
CANH 输出电压(显 性)	$V_{\text{OH(D)}}$	TXD=0V, STB=0V,	2.9	3.4	4.5	V
CANL 输出电压(显 性)	$V_{\text{OL}(D)}$	RL=60Ω, 图 1、图 2	0.8		1.5	V
总线输出电压(隐性)	$V_{O(R)}$	TXD=VIO, STB=0V, RL=60Ω, 图 1、图 2	2	0.5 V _{CC}	3	V
总线差分输出电压 (显性)	$V_{\text{OD(D)}}$	TXD=0V, STB=0V, RL=60Ω, 图 1、图 2	1.5		3	V
总线差分输出电压	$V_{\mathrm{OD(R)}}$	TXD=VIO, STB=0V, 图 1、图 2	-0.012		0.012	V
(隐性)		TXD=VIO, STB=0V, NO LOAD	-0.5		0.05	V
共模输出电压	V_{OC}	STB=0V,图 8	2	$0.5~\mathrm{V}_{\mathrm{CC}}$	3	V
		CANH=-12V, CANL=open, 图 11	-105	-72		mA
短路输出电流	Ios	CANH=12V, CANL=open,		0.36	1	mA
		CANL=-12V, CANH=open,	-1	0.5		mA
		CANL=12V, CANH=open,		71	105	mA
隐性输出电流	$I_{O(R)}$	-27V <canh<32v 0<vcc<5.25v< td=""><td>-2.0</td><td></td><td>2.5</td><td>mA</td></vcc<5.25v<></canh<32v 	-2.0		2.5	mA

如无另外说明,所有典型值均在 25 ℃、电源电压 V_{CC} =5V、 V_{IO} =5V(如果适用)、 R_L =60 Ω 的条件下测得。

总线发送器开关特性

参数	符号	测试条件	最小	典型	最大	单位
传播延时(低到高)	$t_{\rm PLH}$	STB=0V,图 4		90		ns

传播延时(高到低)	$t_{ m PHL}$			65		ns
差分输出上升延时间	tr			45		ns
差分输出下降延时间	tf			45		ns
从侦听模式到显性的 使能时间	$t_{ m EN}$	图 7		10	45	us
TXD 显性超时时间	$t_{\mathrm{dom_TXD}}$	图 10	0.8	2	4	ms
BUS 显性超时时间	$t_{ m dom_BUS}$		0.8	2	4	ms
总线唤醒时间	t _{WAKE}		0.5		5	us

如无另外说明,所有典型值均在 25 ℃、电源电压 V_{CC} =5V、 V_{IO} =5V(如果适用)、 R_L =60 Ω 的条件下测得。

总线接收器直流特性

参数	符号	测试条件	最小	典型	最大	单位
正输入阈值	$V_{\mathrm{IT}^{+}}$	STB=0V,图 5			900	mV
负输入阈值	V _{IT} -		500			mV
比较器阈值迟滞区间	V_{HYS}			120		mV
待机模式正输入阈值	V _{IT+} (stb)	待机模式			1150	mV
待机模式负输入阈值	V _{IT} -(stb)	待机模式	400			mV
掉电时总线输入电流	$I_{(OFF)}$	CANH or CANL=5V, Other pin=0V	-5		5	uA
CANH、CANL 对地 的输入电容	C _I			24		pF
CANH、CANL 差分 输入电容	C_{ID}			12		pF
CANH、CANL 输入 电阻	R_{IN}	TXD=VIO,	9	15	28	ΚΩ
CANH、CANL 差分 输入电阻	R_{ID}	STB=0V	19	30	52	ΚΩ
RI(CANH)、 RIN(CANL)失配度	RI_{match}	CANH=CANL	-2%		2%	
共模电压范围	V_{COM}		-30		30	V

总线接收器开关特性

参数	符号	测试条件	最小	典型	最大	单位
传播延迟(低到高)	$t_{ m PLH}$	STB=0V, 图 6		65		ns
传播延迟(高到低)	$t_{ m PHL}$			60		ns
RXD 信号上升时间	tr			10		ns
RXD 信号下降时间	tf			10		ns

如无另外说明,所有典型值均在 25 ℃、电源电压 V_{CC} =5V、 V_{IO} =5V(如果适用)、 R_L =60 Ω 的条件下测得。

器件开关特性

参数	符号	测试条件	最小	典型	最大	单位
环路延迟 1,驱动器输入到接收器输出, 隐性到显性	$T_{d(LOOP1)}$	STB=0V,图 9		90	220	ns
环路延迟 2,驱动器输入到接收器输出,显性到隐性	T _{d(LOOP2)}			100	220	ns
BUS输出引脚的位时	4	t _{bit(TXD)} =500ns	435		530	ns
间	$t_{ m bit(BUS)}$	t _{bit(TXD)} =200ns	155		210	ns
RXD 输出引脚的位	4	$t_{bit(TXD)}=500ns$	400		550	ns
时间	$t_{ m bit(RXD)}$	t _{bit(TXD)} =200ns	120		220	ns

如无另外说明,所有典型值均在 25 ℃、电源电压 V_{CC} =5V、 V_{IO} =5V(如果适用)、 R_L =60 Ω 的条件下测得。

过温保护

参数	符号	测试条件	最小	典型	最大	单位
过温关断	Tj(sd)			190		°C

欠压保护

参数	符号	测试条件	最小	典型	最大	单位
VCC 欠压保护	V_{uvd_VCC}		3.5		4.5	V
VIO 欠压保护	V _{uvd_VIO}		1.5		2.5	V

如无另外说明,所有典型值均在 25 ℃、电源电压 V_{CC} =5V、 V_{IO} =5V(如果适用)、 R_L =60 Ω 的条件下测得。

TXD 引脚特性

参数	符号	测试条件	最小	典型	最大	单位
TXD 端口高电平输 入电流	I _{IH} (TXD)	TXD=VIO	-5		5	uA
TXD 端口低电平输 入电流	I _{IL} (TXD)	TXD=0V	-260	-150	-30	uA
VCC=0V 时, TXD 的 电流	I _O (off)	VCC=VIO=0V, TXD=VIO	-1		1	uA
输入高电平下限	$V_{ m IH}$		$0.7V_{\mathrm{IO}}$		VCC+0.3	V
输入低电平上限	V_{IL}		-0.3		$0.3V_{\mathrm{IO}}$	V
TXD 端口悬空电压	TXDo			Н		logic

如无另外说明,所有典型值均在 25 ℃、电源电压 V_{CC} =5V、 V_{IO} =5V(如果适用)、 R_L =60 Ω 的条件下测得。

STB 引脚特性

参数	符号	测试条件	最小	典型	最大	单位
STB 端口高电平输入 电流	I _{IH} (STB)	STB=VIO	-2		2	uA
STB 端口低电平输入 电流	I _{IL} (STB)	STB=0V	-20		-2	uA
VCC=0V 时, STB 的 电流	I _O (off)	VCC=VIO=0V, STB=VIO	-1		1	uA
输入高电平下限	$V_{ m IH}$		$0.7 V_{IO}$		VCC+0.3	V
输入低电平上限	V_{IL}		-0.3		$0.3 V_{\mathrm{IO}}$	V
STB 端口悬空电压	STBo			Н		logic

RXD 引脚特性

参数	符号	测试条件	最小	典型	最大	单位
RXD 端口高电平输 出电流	I _{OH} (RXD)	VIO=VCC, RXD=VIO-0.4V	-8	-3	-1	mA
RXD 端口低电平输 出电流	I _{OL} (RXD)	RXD=0.4V, 总线显性	2	5	12	mA
VCC=0V 时,RXD 的 电流	I _O (off)	VCC=VIO=0V, RXD=VIO	-1		1	uA

如无另外说明,所有典型值均在 25 ℃、电源电压 V_{CC} =5V、 V_{IO} =5V(如果适用)、 R_L =60 Ω 的条件下测得。

共模稳定输出

参数	符号	测试条件	最小	典型	最大	单位
SPLIT 端口输出电压 V _{SPLIT}		-500uA <i<sub>SPLIT<500uA</i<sub>	$0.3V_{\rm CC}$	$0.5~\mathrm{V_{CC}}$	$0.7V_{\rm CC}$	V

如无另外说明,所有典型值均在 25 ℃、电源电压 V_{CC} =5V、 V_{IO} =5V(如果适用)、 R_L =60 Ω 的条件下测得。

供电电流

参数		符号	测试条件	最小	典型	最大	单位
	正常模式 显性	I _{CC_D}	总线显性		45	70	mA
	正常模式 隐性	I _{CC_R}	总线隐性		5	10	mA
VCC 电源电流	待机模式]	I _{CC_STB}	STB=VCC, TXD=VIO, (SIT1042QT/3、 SIT1042QTK/3 型号)		0.5	5	uA
			STB=VCC, TXD=VCC, (SIT1042QT 型号)		12	25	uA
	正常模式 显性	I _{IO_D}	RXD 悬空,STB=0V TXD=0V		350	1000	uA
VIO 电源电流	正常模式 隐性	I _{IO_R}	RXD 悬空,STB=0V TXD=VIO		80	200	uA
	待机模式	I _{IO_STB}	STB=TXD=VIO		10	20	uA

ESD 性能

参数	符号	测试条件	最小	典型	最大	单位
CAN 总线引脚接触 放电模型(IEC)	V_{ESD_IEC}	IEC 61000-4-2: 接触放电 (CANH,CANL)	-4		+4	KV
CAN 总线引脚人体 放电模型(HBM)	$V_{\text{ESD_HBM}}$		-8		+8	KV
组件充电模型 (CDM)	V_{CDM}		-750		+750	V
机械模型(MM)	V_{MM}		-300		+300	V

功能表

表 1 CAN 收发器真值表

TXD ⁽¹⁾	STB ⁽¹⁾	CANH ⁽¹⁾	CANL ⁽¹⁾	BUS 状态	$\mathbf{RXD}^{(1)}$
L	L	Н	L	显性	L
H (或浮空)	L	0.5VCC	0.5VCC	隐性	Н
X	H (或浮空)	GND	GND	隐性	Н

(1) H=高电平; L=低电平; X=不关心

表 2 接收器功能表

V _{ID} =CANH-CANL	RXD ⁽¹⁾	BUS 状态
V _{ID} ≥0.9V	L	显性
$0.5 < V_{ID} < 0.9V$?	?
$V_{ID} \leq 0.5V$	Н	隐性
Open	Н	隐性

(1) H=高电平; L=低电平; ? =不确定

表 3 欠压保护状态表

VCC	VIO ⁽¹⁾	BUS 状态	BUS 输出 ⁽²⁾	$\mathbf{RXD}^{(2)}$
VCC>V _{uvd_vcc}	VIO>V _{uvd_vio}	正常	根据 STB 和 TXD	跟随总线
VCC <v<sub>uvd_vcc</v<sub>	VIO>V _{uvd_vio}	保护态	GND	Н
VCC>V _{uvd_vcc}	VIO <v<sub>uvd_vio</v<sub>	保护态	Z	Н
VCC <v<sub>uvd_vcc</v<sub>	VIO <v<sub>uvd_vio</v<sub>	保护态	Z	Н

- (1) 仅限 SIT1042QT/3、SIT1042QTK/3 型号;
- (2) H=高电平; Z=高阻态;

测试电路

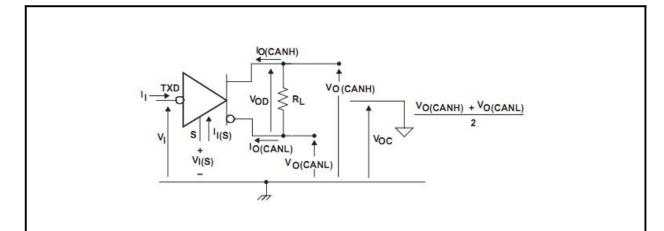


图 1 驱动器电压、电流测试定义

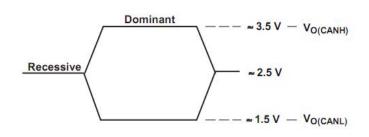


图 2 总线逻辑电压定义

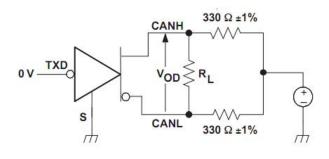
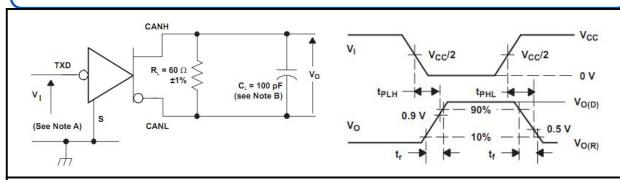
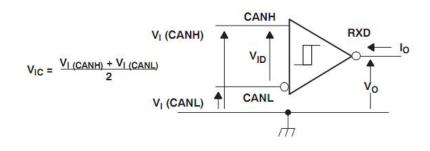




图 3 驱动器 VOD 测试电路

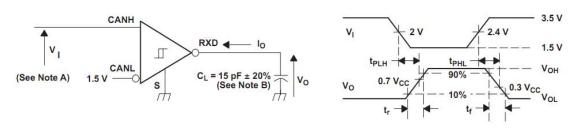


图 4 驱动器测试电路与电压波形

图 5 接收器电压与电流定义

- A、 输入脉冲产生器特点: PRR≤125KHz, 50%占空比, tr<6ns, tf<6ns, Zo=50Ω
- B、 CL 包括仪器与固定电容,误差在 20%以内。

图 6 接收器测试电路与电压波形

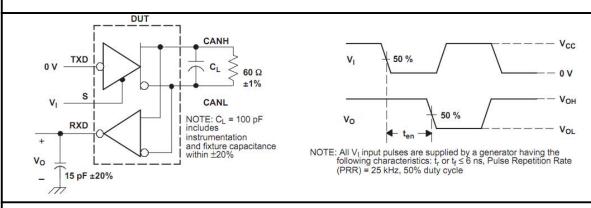
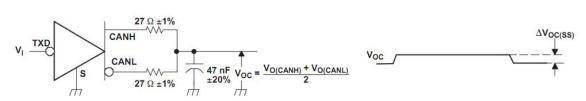
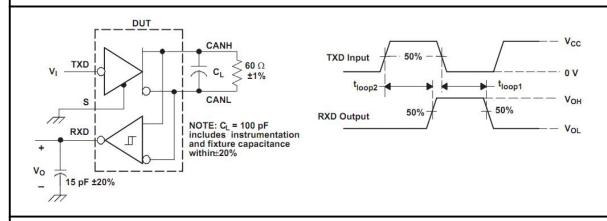
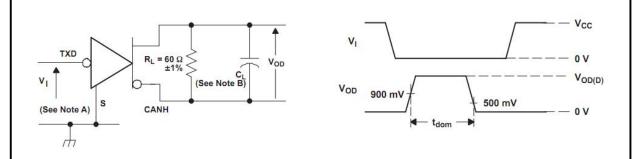




图 7 ten 测试电路与电压波形



注: VI 从 0~VCC,输入脉冲产生器特点: PRR≤125KHz,50%占空比,tr<6ns,tf<6ns,Zo=50Ω

图 8 共模输出电压测试与波形

图 9 t(LOOP)测试电路与波形

图 10 显性超时测试电路与波形

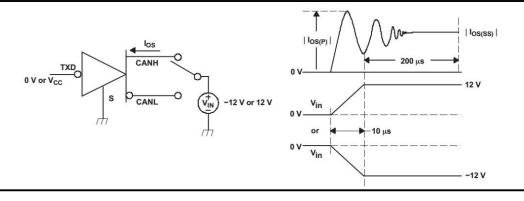
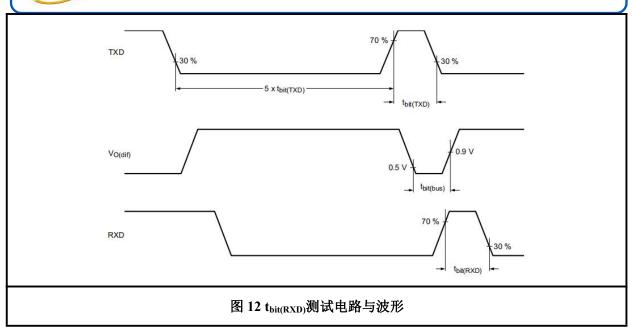



图 11 驱动器短路电流测试电路与波形

说明

1 简述

SIT1042Q 是一款应用于 CAN 协议控制器和物理总线之间的接口芯片,可应用于卡车、公交、小汽车、工业控制等领域,支持 5Mbps CAN FD 灵活数据速率,具有在总线与 CAN 协议控制器之间进行差分信号传输的能力,完全兼容"ISO 11898"标准。

2 短路保护

SIT1042Q 的驱动级具有限流保护功能,以防止驱动电路短路到正和负的电源电压,发生短路时功耗会增加,短路保护功能可以保护驱动级不被损坏。

3 过温保护

SIT1042Q 具有过温保护功能,过温保护触发后,驱动级的电流将减小,因为驱动管是主要的耗能部件,电流减小可以降低功耗从而降低芯片温度。同时芯片的其它部分仍然保持正常工作。

4 欠压保护

SIT1042Q 电源引脚上具有欠压检测功能,可将器件置于受保护模式。这样可在 VCC 低于 $V_{uvd\ VCC}$ 或 VIO 低于 $V_{uvd\ VIO}$ (如果适用)时保护总线(总线输出高阻态)。

5 控制模式

控制引脚 STB 允许选择两种工作模式: 高速模式和待机模式。

高速模式是正常工作模式,通过将引脚 STB 接地来选择。CAN 驱动器和接收器均能完全正常运行且 CAN 通信双向进行。

将引脚 STB 设置为高电平,可激活低功耗待机模式。CAN 驱动器和接收器均关断,以节系统功耗。引脚 STB 上的高电平激活该低功率接收器和唤醒滤波器,一旦低功率差分比较器检测到超过 twake 的主导总线电平,引脚 RXD 将变为低电平。

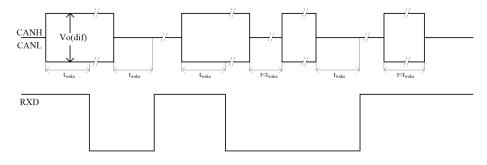
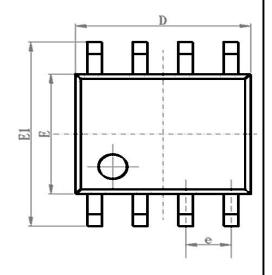
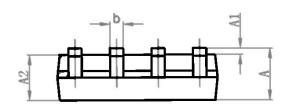


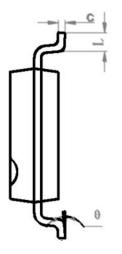
图 13 唤醒时序

6 显性超时功能

在高速模式下,如果引脚 TXD 上的低电平持续时间超过内部定时器值(t_{dom_BUS}),发送器将被禁用,驱动总线进入隐性状态。可防止引脚 TXD 因硬件或软件应用故障而被强制为永久低电平导致总线线路被驱动至永久显性状态(阻塞所有网络通信)。引脚 TXD 出现上升沿信号可复位。

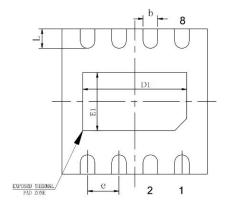

在待机模式下,如果总线出现显性状态并持续时间超过(t_{dom_BUS}),引脚 RXD 将强制变为高电平。可防止由于总线短路或网络上其他一个节点的故障导致的永久唤醒。当总线由显性变为隐性即可复位。




SOP8 外形尺寸

封装尺寸

符号	最小值/mm	典型值/mm	最大值/mm
A	1.50	1.60	1.70
A1	0.1	0.15	0.2
A2	1.35	1.45	1.55
b	0.355	0.400	0.455
D	4.800	4.900	5.00
Е	3.780	3.880	3.980
E1	5.800	6.000	6.200
e		1.270BSC	
L	0.40	0.60	0.80
С	0.153	0.203	0.253
θ	-2°	-4°	-6°


HVSON8 / DFN3*3-8 外形

封装尺寸

符号	最小值/mm	典型值/mm	最大值/mm
A	0.70	0.75	0.80
A1	0.00	0.02	0.05
A3		0.203 REF	
D	2.90	3.00	3.10
Е	2.90	3.00	3.10
D1	2.05	2.15	2.25
1			

	8		
		II.	1
		İ	
_	<u> </u>	 	_ m
	FIR LA		
	(Leserwark)	Ĺ	
	4 2		
	1 2	100	

E1	1.10	1.20	1.30
ь	0.25	0.30	0.35
e	0.65 TYP		
L	0.35	0.40	0.45

A1 A1

定购信息

定购代码	温度	封装
SIT1042QT	-40℃~150℃	SOP8
SIT1042QT/3	-40℃~150℃	SOP8
SIT1042QTK/3	-40°C~150°C	HVSON8 / DFN3*3-8, 小外形,无引脚

SOP8 编带式包装为 2500 颗/盘, HVSON8 / DFN3*3-8 编带式包装为 6000 颗/盘。

重要声明

芯力特有权在不事先通知的情况下,保留更改上述资料的权利。