

#### 1. DESCRIPTION

These circuits consist of four independent, high gain operational amplifiers with frequency compensation implemented internally. They operate from a single power supply over a wide range of voltages.

Operation from split power supplies is also possible and the low-power supply current drain is independent of the magnitude of the power supply voltage.

### 2. FEATURES

- Wide gain bandwidth: 1.3 MHz
- Input common mode voltage range includes ground
- Large voltage gain: 100 dB
- Very low supply current/amplifier: 375 μA Low input bias current: 20 nA
- Low input voltage: 3 mV max
- Low input offset current: 2 nA
- Wide power supply range:
  - -- Single supply: 3 V to 30 V
  - -- Dual supplies: ±1.5 V to ±15 V



#### 3. PIN CONNECTIONS AND SCHEMATIC DIAGRAM

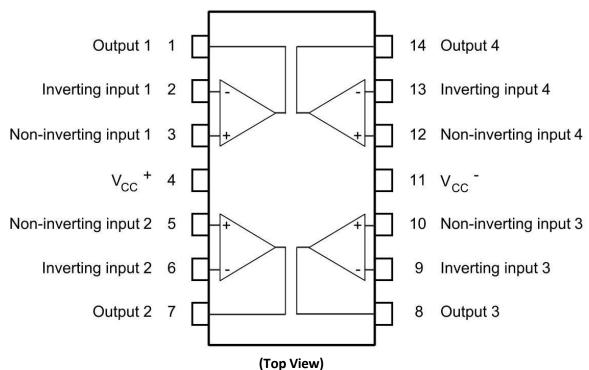



Figure 1: Pin connections

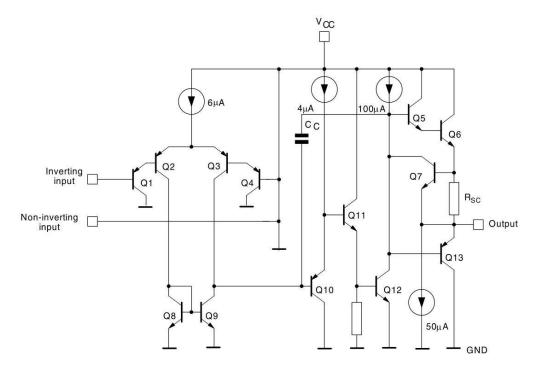



Figure 2: Schematic diagram

www.xinluda.com 2 / 13 Rev 1.1



#### 4. ABSOLUTE MAXIMUM RATINGS AND OPERATING CONDITIONS

Table 2: Absolute maximum ratings

| Symbol           | Parameter                                  |                               | Value      | Unit |  |
|------------------|--------------------------------------------|-------------------------------|------------|------|--|
| Vcc              | Supply voltage                             |                               | ±16 or 32  |      |  |
| Vi               | Input voltage                              | -0.3 to V <sub>CC</sub> + 0.3 | V          |      |  |
| Vid              | Differential input voltag                  | 32                            |            |      |  |
| P <sub>tot</sub> | Power dissipation: D suf                   | ffix                          | 400        | mW   |  |
|                  | Output short-circuit durat                 | ion <sup>(2)</sup>            | Infinite   |      |  |
| lin              | Input current <sup>(3)</sup>               |                               | 50         | mA   |  |
| T <sub>stg</sub> | Storage temperature rar                    | nge                           | -65 to 150 |      |  |
| Tj               | Maximum junction temper                    | Maximum junction temperature  |            |      |  |
| $R_{thja}$       | Thermal resistance junction to ambient (4) | SOP14                         | 103        |      |  |
| Rthjc            | Thermal resistance junction to case        | SOP14                         | 31         | °C/W |  |
|                  | HBM: human body model <sup>(5)</sup>       | XD/XL124                      | 250        |      |  |
| 500              | MM: machine model                          | (6)                           | 100        | 1 ,, |  |
| ESD              | CDM: charged device mo                     | odel                          | 1500       | V    |  |

#### Notes:

(3)This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as an input diode clamp. In addition to this diode action, there is also an NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the Vcc voltage level (or to ground for a large overdrive) for the time during which an input is driven negative. This is not destructive and normal output starts up again for input voltages higher than -0.3 V.

<sup>(4)</sup>Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuits on all amplifiers. These are typical values given for a single layer board

<sup>(5)</sup>Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device , done for all couples of pin combinations with other pins floating.

<sup>(6)</sup>Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5  $\Omega$ ), done for all couples of pin combinations with other pins floating.

www.xinluda.com 3 / 13 Rev 1.1

<sup>(1)</sup> Neither of the input voltages must exceed the magnitude of (V<sub>CC</sub><sup>+</sup>) or (V<sub>CC</sub><sup>-</sup>).

 $<sup>^{(2)}</sup>$ Short-circuits from the output to  $V_{cc}$  can cause excessive heating if  $V_{cc}$  > 15 V. The maximum output current is approximately 40 mA independent of the magnitude of  $V_{cc}$ . Destructive dissipation can result from simultaneous short-circuits on all amplifiers.



**Table 3: Operating conditions** 

| Symbol            | Parameter                   | Value         | Unit                     |    |
|-------------------|-----------------------------|---------------|--------------------------|----|
|                   | Consilionalitana            | Single supply | 3 to 30                  |    |
| Vcc               | Supply voltage              | Dual supply   | ±1.5 to ±15              | V  |
| V <sub>IC</sub>   | Common-mode input volta     | ge range      | (Vcc) - 0.1 to (Vcc) - 1 |    |
| T <sub>Oper</sub> | Operating temperature range | XD/XL124      | -40 to 105               | °C |



# **5. ELECTRICAL CHARACTERISTICS**

Table 4: VCC+ = 5 V, VCC- = Ground, Vo = 1.4 V, Tamb = 25 °C (unless otherwise specified)

| Symbol                                      | Parame                                                                                                        | Parameter                                                   |                                   |    | Тур. | Max. | Unit |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------|----|------|------|------|
| Vio                                         |                                                                                                               | T <sub>amb</sub> = 25 °                                     | °C                                |    | 2    | 3    |      |
| LM224A,<br>LM224W<br>,<br>LM324A,<br>LM324W |                                                                                                               | Tmin ≤ Tamb ≤ Tmax                                          |                                   |    |      | 5    |      |
| Vio                                         | Input offset voltage (1)                                                                                      | T <sub>amb</sub> = 25 °C                                    | XD/XL124                          |    | 2    | 5    | mV   |
| LM124<br>,<br>LM224<br>,<br>LM324           |                                                                                                               | T <sub>min</sub> ≤ T <sub>amb</sub> ≤ T <sub>max</sub>      | XD/XL124                          |    |      | 7    |      |
|                                             |                                                                                                               | T <sub>amb</sub> = 25 °                                     | c.                                |    | 2    | 20   |      |
| l <sub>io</sub>                             | Input offset current                                                                                          | T <sub>min</sub> ≤ T <sub>amb</sub> ≤                       | T <sub>max</sub>                  |    |      | 40   |      |
|                                             | (2)                                                                                                           | T <sub>amb</sub> = 25 °C                                    |                                   |    | 20   | 100  | nA   |
| lib                                         | Input bias current (2)                                                                                        | T <sub>min</sub> ≤ T <sub>amb</sub> ≤                       | T <sub>max</sub>                  |    |      | 200  |      |
|                                             | Large signal voltage gain,                                                                                    | T <sub>amb</sub> = 25 °                                     | C.                                | 50 | 100  |      |      |
| Avd                                         | Avd $Vcc^{+} = 15 \text{ V}, R_L = 2 \text{ k}\Omega,$ $V_o = 1.4 \text{ V to } 11.4 \text{ V}$ $T_{min} \le$ |                                                             | T <sub>max</sub>                  | 25 |      |      | V/mV |
|                                             | Supply voltage rejection ratio,                                                                               | T <sub>amb</sub> = 25 °C                                    |                                   | 65 | 110  |      |      |
| SVR                                         | $R_s \le 10 \text{ k}\Omega, V_{CC}^+ = 5 \text{ V to } 30 \text{ V}$                                         | Tmin ≤ Tamb ≤                                               | Tmax                              | 65 |      |      | dB   |
|                                             |                                                                                                               | T <sub>amb</sub> = 25 °C, V <sub>CC</sub> = 5V              |                                   |    | 0.7  | 1.2  | mA   |
|                                             | Supply current, all amps, no load                                                                             | $T_{amb} = 25  ^{\circ}\text{C},  V_{CC} = 30  \text{V}$    |                                   |    | 1.5  | 3    |      |
| Icc                                         |                                                                                                               | $T_{min} \le T_{amb} \le T_{max}$ , $V_{CC} = 5 V$          |                                   |    | 0.8  | 1.2  |      |
|                                             |                                                                                                               | $T_{min} \le T_{amb} \le T_{max}$ , $V_{CC} = 30 \text{ V}$ |                                   |    | 1.5  | 3    |      |
|                                             | Input common mode voltage                                                                                     | V <sub>CC</sub> = 30 V, T <sub>amb</sub> = 25 °C            |                                   | 0  |      | 28.5 |      |
| V <sub>icm</sub>                            | range <sup>(3)</sup>                                                                                          | V <sub>CC</sub> = 30 V, T <sub>min</sub> ≤ 7                | <sub>amb</sub> ≤ T <sub>max</sub> | 0  |      | 28   | V    |
|                                             | Common mode rejection ratio,                                                                                  | T <sub>amb</sub> = 25 °                                     | C.                                | 70 | 80   |      |      |
| CMR                                         | R <sub>s</sub> ≤ 10 kΩ                                                                                        | T <sub>min</sub> ≤ T <sub>amb</sub> ≤                       | T <sub>max</sub>                  | 60 |      |      | dB   |
| I <sub>source</sub>                         | Output current source,<br>V <sub>id</sub> = 1 V                                                               | $V_{CC} = 15 \text{ V}, V_0 = 2 \text{ V}$                  |                                   | 20 | 40   | 70   | mA   |
|                                             | Output sink current,                                                                                          | V <sub>CC</sub> = 15 V, V <sub>o</sub>                      | = 2 V                             | 10 | 20   |      |      |
| I <sub>sink</sub>                           | V <sub>id</sub> = -1 V                                                                                        | V <sub>CC</sub> = 15 V, V <sub>o</sub> =                    | = 0.2 V                           | 12 | 50   |      | μΑ   |
|                                             | High level output voltage,                                                                                    | T <sub>amb</sub> = 25 °                                     | °C                                | 26 | 27   |      |      |
|                                             | $V_{CC} = 30 \text{ V}, R_L = 2 \text{ k}\Omega$                                                              | $T_{min} \le T_{amb} \le T_{max}$                           |                                   | 26 |      |      | V    |
|                                             | High level output voltage,                                                                                    | T <sub>amb</sub> = 25 °C                                    |                                   | 27 | 28   |      |      |
| $V_{OH}$                                    | $V_{CC}$ = 30 V, $R_L$ = 10 k $\Omega$                                                                        | T <sub>min</sub> ≤ T <sub>amb</sub> ≤ T <sub>max</sub>      |                                   | 27 |      |      |      |
|                                             | High level output voltage,                                                                                    | T <sub>amb</sub> = 25 °C 3.5                                |                                   |    |      |      |      |
|                                             | $V_{CC} = 5 \text{ V}, R_L = 2 \text{ k}\Omega$                                                               | T <sub>min</sub> ≤ T <sub>amb</sub> ≤ T <sub>max</sub>      |                                   | 3  |      |      |      |



| Symbol                          | Parameter                                                                                                                       |                                                                                                                                   |  | Тур.  | Max. | Unit   |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|-------|------|--------|
|                                 | Low level output voltage,                                                                                                       | T <sub>amb</sub> = 25 °C                                                                                                          |  | 5     | 20   | .,     |
| $V_{OL}$                        | $R_L = 10k\Omega$                                                                                                               | T <sub>min</sub> ≤ T <sub>amb</sub> ≤ T <sub>max</sub>                                                                            |  |       | 20   | mV     |
| SR                              | $V_{CC} = 15 \text{ V, V}_i = 0.5 \text{ to } 3 \text{ V, R}_L$ $= 2 \text{ k}\Omega, \text{ C}_L = 100 \text{ pF,}$ unity gain |                                                                                                                                   |  | 0.4   |      | V/µs   |
| GBP                             | Gain bandwidth product                                                                                                          | $V_{CC} = 30 \text{ V, } f = 100 \text{ kHz,}$ $V_{in} = 10 \text{ mV, } R_L = 2 \text{ k}\Omega,$ $C_L = 100 \text{ pF}$         |  | 1.3   |      | MHz    |
| THD                             | Total harmonic distortion                                                                                                       | $f = 1kHz, A_v = 20 \text{ dB}, R_L = 2 \text{ k}\Omega, V_o$ $= 2 \text{ V}_{pp}, C_L = 100 \text{ pF},$ $V_{CC} = 30 \text{ V}$ |  | 0.015 |      | %      |
| en                              | Equivalent input noise voltage                                                                                                  | $f = 1 \text{ kHz}, R_s = 100 \Omega,$ $V_{CC} = 30 \text{ V}$                                                                    |  | 40    |      | nV/√Hz |
| DVio                            | Input offset voltage drift                                                                                                      |                                                                                                                                   |  | 7     | 30   | μV/°C  |
| Dlio                            | Input offset current drift                                                                                                      |                                                                                                                                   |  | 10    | 200  | pA/°C  |
| V <sub>01</sub> /V <sub>0</sub> | Channel separation (4)                                                                                                          | 1 kHz ≤ f≤ 20 kHZ                                                                                                                 |  | 120   |      | kHz    |

#### Notes:

 $<sup>^{(1)}</sup>V_{0}$  = 1.4 V,  $R_{s}$  = 0  $\Omega,$  5 V <  ${V_{CC}}^{+}$  < 30 V, 0 <  ${V_{ic}}$  <  ${V_{CC}}^{+}$  - 1.5 V

<sup>&</sup>lt;sup>(2)</sup>The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so there is no load change on the input lines.

 $<sup>^{(3)}</sup>$ The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is ( $V_{cc}$ ) - 1.5 V, but either or both inputs can go to 32 V without damage.

<sup>&</sup>lt;sup>(4)</sup>Due to the proximity of external components, ensure that there is no coupling originating from stray capacitance between these external parts. Typically, this can be detected at higher frequencies because this type of capacitance increases.



#### 6. ELECTRICAL CHARACTERISTICS CURVES

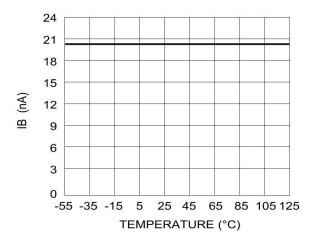



Figure 3: Input bias current vs. temperature

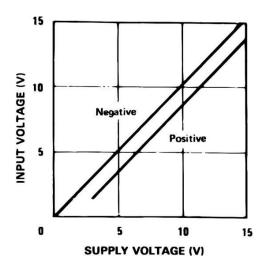



Figure 5: Input voltage range

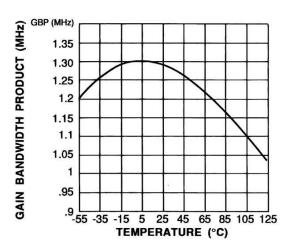



Figure 7: Gain bandwidth product vs. temperature

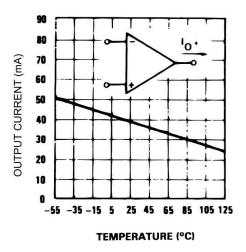



Figure 4: Output current limitation

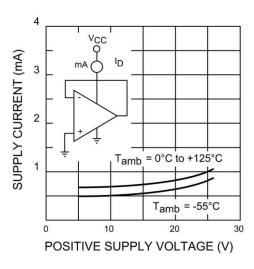



Figure 6: Supply current vs. supply voltage

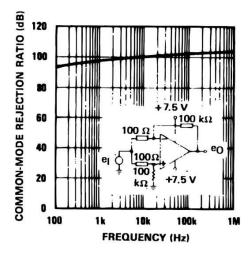



Figure 8: Common-mode rejection ratio

<u>www.xinluda.com</u> 7 / 13 Rev 1.1



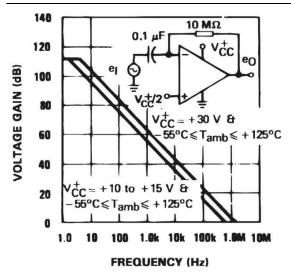



Figure 9: Open loop frequency response

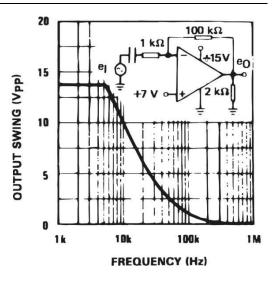



Figure 10: Large signal frequency response

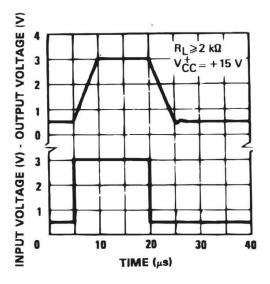



Figure 11: Voltage follower pulse response

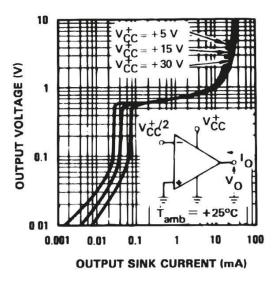



Figure 12: Output characteristics (current sinking)

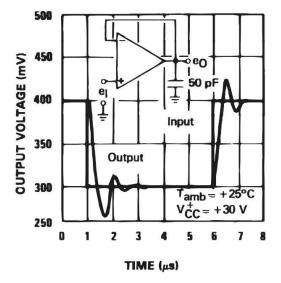



Figure 13: Voltage follower pulse response (small signal)

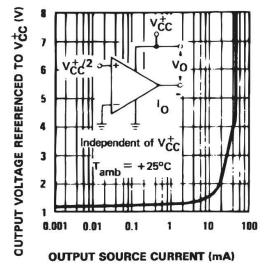
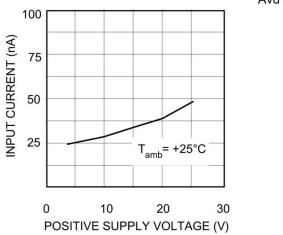




Figure 14: Output characteristics (current sourcing)

www.xinluda.com 8 / 13 Rev 1.1



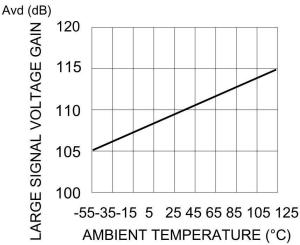
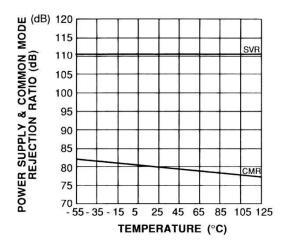




Figure 15: Input current vs. supply voltage

Figure 15: Large signal voltage gain vs. temperature



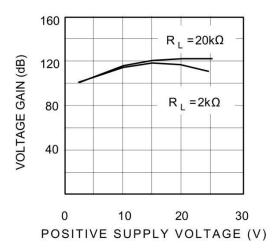



Figure 17: Power supply and common mode rejection ratio vs. temperature

Figure 18: Voltage gain vs. supply voltage



### 7. TYPICAL SINGLE-SUPPLY APPLICATIONS

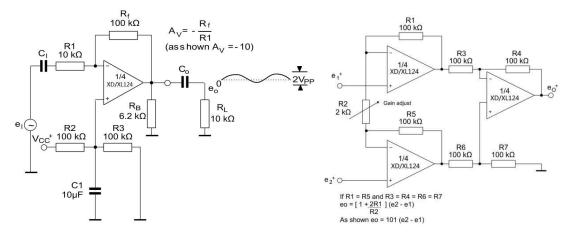



Figure 19: AC coupled inverting amplifier

Figure 20: High input Z adjustable gain DC instrumentation amplifier

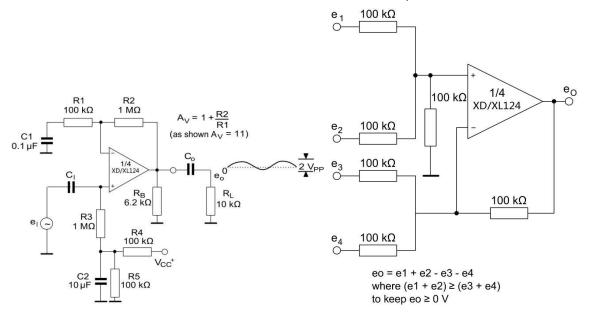



Figure 21: AC coupled non inverting amplifier

Figure 22: DC summing amplifier

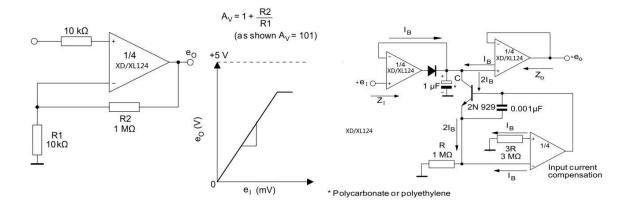



Figure 23: Non-inverting DC gain

Figure 24: Low drift peak detector



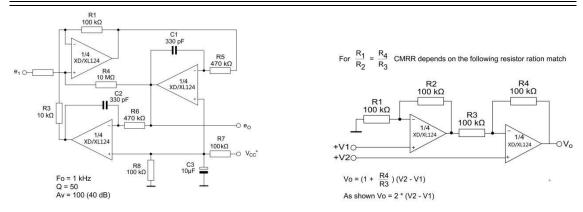



Figure 25: Active bandpass filter

Figure 26: High input Z, DC differential amplifier

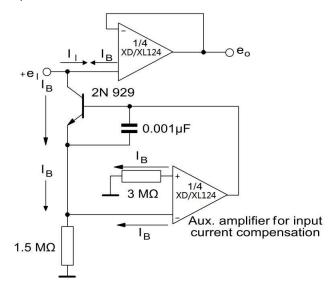
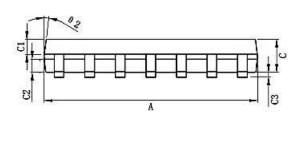


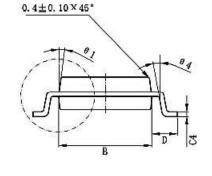

Figure 27: Using symmetrical amplifiers to reduce input current (general concept)

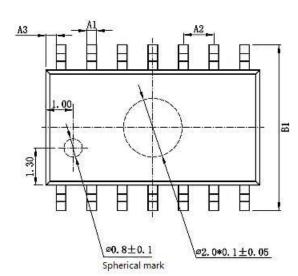
<u>www.xinluda.com</u> 11 / 13 Rev 1.1

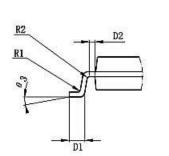


## 8. ORDERING INFORMATION

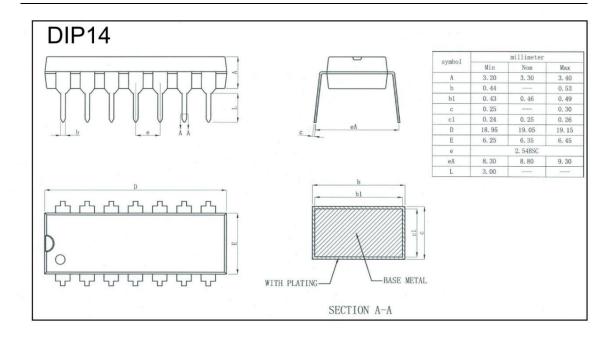

### **Ordering Information**


| Part<br>Number | Device<br>Marking | Package<br>Type | Body size<br>(mm) | Temperature (°C) | MSL  | Transport<br>Media | Package<br>Quantity |
|----------------|-------------------|-----------------|-------------------|------------------|------|--------------------|---------------------|
| XL124          | XL124             | SOP14           | 8.75 * 4.00       | - 40 to 105      | MSL3 | T&R                | 2500                |
| XD124          | XD142             | DIP14           | 19.05 * 6.35      | - 40 to 105      | MSL3 | Tube 25            | 1000                |


### 9. DIMENSIONAL DRAWINGS


# SOP14

| SYM | MIN (mm) | MAX(mm) | MARK | MIN(mm)       | MAX (mm) |
|-----|----------|---------|------|---------------|----------|
| ٨   | 8. 55    | 8.75    | C4   | 0, 193        | 0, 213   |
| A1  | 0, 356   | 0, 456  | D    | 0. 95         | 1, 15    |
| A2  | 1, 2     | 7TYP    | D1   | 0.40          | 0.70     |
| A3  | 0.3      | 12TYP   | D2   | 0. 20TYP      |          |
| В   | 3, 80    | 4.00    | RI   | 0. 20TYP      |          |
| B1  | 5, 80    | 6, 20   | R2   | 0. 20TYP      |          |
| C   | 1.40     | 1.60    | θ 1  | 8° ~ 12° TYP4 |          |
| Cl  | 0.60     | 0.70    | 02   | 8° ∼ 12° TYP4 |          |
| C2  | 0.55     | 0.65    | 83   | 0° ~ 8°       |          |
| C3  | 0.05     | 0, 25   | 84   | 4°            | ~ 12°    |














 $[if you \, need \, help contact \, us. \, Xin luda\, reserves \, the \, right \, to \, change the \, above \, information \, without prior notice]$