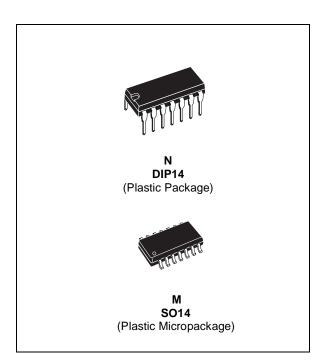
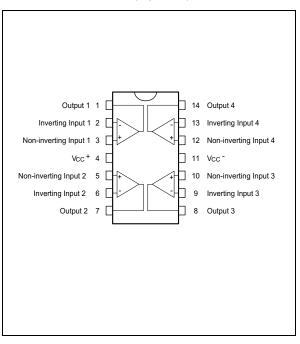
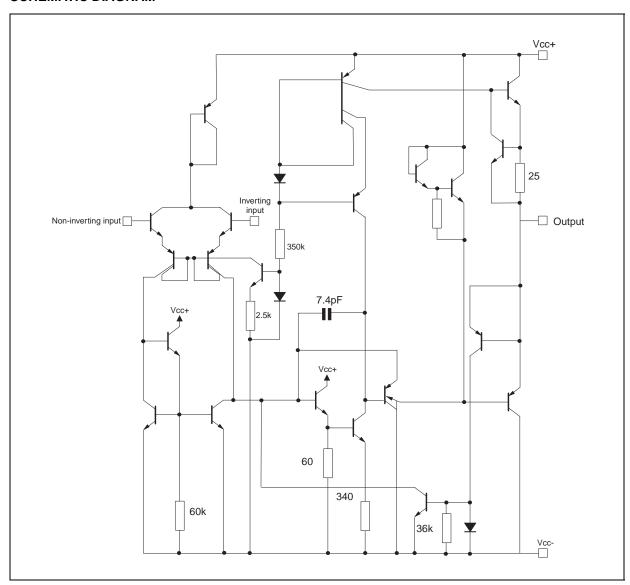
- LOW SUPPLY CURRENT: 0.53mA/AMPLI-FIER
- CLASS AB OUTPUT STAGE: NO CROSS **OVER DISTORTION**
- PIN COMPATIBLE WITH LM124
- LOW INPUT OFFSET VOLTAGE: 1mV
- LOW INPUT OFFSET CURRENT: 2nA
- LOW INPUT BIAS CURRENT: 30nA
- GAIN BANDWIDTH PRODUCT: 1.3MHz
- HIGH DEGREE OF ISOLATION BETWEEN AMPLIFIERS: 120dB
- OVERLOAD PROTECTION FOR INPUTS AND OUTPUTS


DESCRIPTION

The LM148 consists of four independent, high gain internally compensated, low power operational amplifiers which have been designed to provide functional characteristics identical to those of the familiar UA741 operational amplifier. In addition the total supply current for all four amplifiers is compatible to the supply current of a single UA741 type op amp. Other features include input offset current and input bias current which are much less than those of a standard UA741. Also, excellent isolation between amplifiers has been achieved by independently biasing each amplifier and using layout techniques qhich minimize thermal coupling.


ORDER CODE

Part	Temperature	Package		
Number	Range	N	М	
LM148	-55°C, +125°C	•	•	
LM248	-40°C, +105°C	•	•	
LM348	_M348 0°C, +70°C		•	
Example: LM348D				


N = Dual in Line Package (DIP)
 M = Small Outline Package (SO) - also available in Tape & Reel (DT)

PIN CONNECTIONS (top view)

SCHEMATIC DIAGRAM

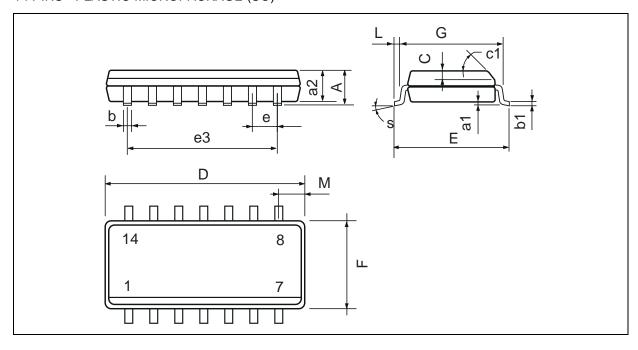
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	LM148	LM248	LM348	Unit
V _{CC}	Supply voltage		±22		V
V _i	Input Voltage 1)		±22		
V _{id}	Differential Input Voltage		±44		V
	Output Short-circuit Duration ²⁾		Infinite		
P _{tot}	Power Dissipation	ation 500		mW	
T _{oper}	Operating Free-air Temperature Range	-55 to +125	-40 to +105	0 to +70	°C
T _{stg}	Storage Temperature Range		-65 to +150		°C

^{1.} For supply voltage less than maximum value, the absolute maximum input voltage is equal to the supply voltage.

^{2.} Any of the amplifier outputs can be shorted to ground indefinitly; however more than one should not be simultaneously shorted as the maximum junction will be exceeded.

ELECTRICAL CHARACTERISTICS


 $V_{CC} = \pm 15V$, $T_{amb} = 25$ °C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
.,	Input Offset Voltage ($R_s \le 10k\Omega$)			_	.,
V_{io}	$T_{amb} = 25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		1	5 6	mV
	Input Offset Current		_		_
l _{io}	T _{amb} = 25°C T _{min} ≤ T _{amb} ≤ T _{max}		2	25 75	nA
l _{ib}	Input Bias Current $T_{amb} = 25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		30	100 300	nA
	Large Signal Voltage Gain ($V_0 = \pm 10V$, $R_L = 2k\Omega$)				
A_{vd}	$T_{amb} = 25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$	50 25	160		V/mV
	Supply Voltage Rejection Ratio ($R_S \le 10k\Omega$)				
SVR	$T_{amb} = 25$ °C $T_{min} \le T_{amb} \le T_{max}$	77 77	100		dB
	Supply Current, all Amp, no load				
I _{cc}	$T_{amb} = 25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		2.1	3.6 4.8	mA
	Input Common Mode Voltage Range				
V_{icm}	$T_{amb} = 25$ °C $T_{min} \le T_{amb} \le T_{max}$	±12 ±12			
	Common Mode Rejection Ratio ($R_s \le 10k\Omega$)				
CMR	$T_{amb} = 25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$	70 70	110		dB
I _{os}	Output Short-circuit Current T _{amb} = 25°C	10	25	35	mA
$\pm V_{opp}$	$ \begin{array}{ll} \text{Output Voltage Swing} \\ T_{amb} = 25^{\circ}\text{C} & R_{L} \leq 10 k\Omega \\ R_{L} \leq 2 k\Omega \\ T_{min} \leq T_{amb} \leq T_{max} & R_{L} \leq 10 k\Omega \end{array} $	12 10 12	13 12		V
	$R_L \le 2k\Omega$	10			
SR	Slew Rate ($V_I = \pm 10V$, $R_L = 10k\Omega$, $C_L = 100pF$, unity Gain)	0.25	0.5		V/μs
t _r	Rsie Time ($V_I = \pm 10V$, $R_L = 10k\Omega$, $C_L = 100pF$, unity Gain)		0.3		μs
K _{OV}	Overshoot ($V_I = \pm 10V$, $R_L = 10k\Omega$, $C_L = 100pF$, unity Gain)		5		%
R _I	Input Resistance	0.8	2.5		ΜΩ
GBP	Gain Bandwith Product (V _I = 10 mV, R _L = 10k Ω , C _L = 100pF f =100kHz)	0.7	1.3		MHz
THD	Total Harmonic Distortion (f = 1kHz, A_v = 20dB, R_L = 10k Ω C_L = 100pF, V_o = 2 V_{pp})		0.08		%
e _n	Equivalent Input Noise Voltage (f = 1kHz, $R_s = 100\Omega$		40		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
V _{o1} /V _{o2}	Channel Separation		120		dB

!

PACKAGE MECHANICAL DATA

14 PINS - PLASTIC MICROPACKAGE (SO)

Dimensions -	Millimeters		Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.75			0.069
a1	0.1		0.2	0.004		0.008
a2			1.6			0.063
b	0.35		0.46	0.014		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.020	
c1	45° (typ.)					
D (1)	8.55		8.75	0.336		0.344
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		7.62			0.300	
F (1)	3.8		4.0	0.150		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.020		0.050
М			0.68			0.027
S	8° (max.)					

Note: (1) D and F do not include mold flash or protrusions - Mold flash or protrusions shall not exceed 0.15mm (.066 inc) ONLY FOR DATA BOOK. Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States © http://www.st.com

